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We formulate a geometric framework that allows us to study momentum and energy transport in
nonrelativistic systems. It amounts to a coupling of the nonrelativistic system to the Newton-Cartan (NC)
geometry with torsion. The approach generalizes the classic Luttinger’s formulation of thermal transport. In
particular, we clarify the geometric meaning of the fields conjugated to energy and energy current. These
fields describe the geometric background with nonvanishing temporal torsion. We use the developed
formalism to construct the equilibrium partition function of a nonrelativistic system coupled to the NC
geometry in 2þ 1 dimensions and to derive various thermodynamic relations.
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Introduction.—In the seminal work of 1964, Luttinger
developed a linear response theory for thermoelectric
transport [1]. An essential part of his approach is the
coupling of the many body system to an auxiliary external
“gravitational potential” conjugated to the energy density.
The evolution of the energy density is defined by the
divergence of energy current; the latter is a fundamental
object in the theory of thermal transport. In this Letter we
identify the appropriate sources of the momentum, energy,
and energy current in nonrelativistic systems. We use the
developed general formalism to derive thermodynamic
relations involving thermal Hall current in the presence
of external fields.
In relativistic systems the energy density and the

corresponding current are naturally combined into a stress-
energy tensor Tμν coupled to an external gravitational field
described by the spacetime metric. The energy-momentum
and charge conservation laws can be written as

∂μTμν ¼ FνρJρ; ∂μJμ ¼ 0; ð1Þ
where Tμν is a stress-energy tensor defined as a response to
the external metric gμν. Here, we introduced an electric
current Jμ and an external electromagnetic field Fνρ ¼
∂νAρ − ∂ρAν. Given a matter action S we can compute
the energy-momentum tensor and the electric current as

Tμν ¼ 2ffiffiffi
g

p δS
δgμν

; Jμ ¼ 1ffiffiffi
g

p δS
δAμ

: ð2Þ

In the absence of the external sources the first equation in
Eq. (1) encodes two conservation laws: conservation of
momentum and conservation of energy,

_Pj þ ∂iTij ¼ 0; _εþ ∂iJiE ¼ 0; ð3Þ
where we introduced momentum, energy, and energy
current as Pj ≡ T0j, ε ¼ T00 and JiE ¼ Ti0. These notations

will be very natural later on. In relativistic systems the
stress-energy tensor Tμν (being defined as the response to
the external spacetime metric) is symmetric. This implies
equality of momentum and energy current Pi ¼ JiE.
In nonrelativistic systems this equality no longer holds.

For example, for a single massive nonrelativistic particle
with mass m moving with velocity vi, we have Pi ¼ mvi

and JiE ¼ ðmv2=2Þvi.
The first result of this Letter is the identification of the

appropriate sources for the momentum, energy, and energy
current. We introduce a nonrelativistic analogue of Eq. (2).
This is achieved by replacing the spacetime metric gμν by
different geometric data known as Newton-Cartan (NC)
geometry with torsion. We explain how to couple a given
nonrelativistic system to the NC geometry. Our analysis
does not assume Galilean symmetry and is valid in systems
without boost symmetry. The NC geometry has appeared in
the context of the quantum Hall effect [2], nonrelativistic
(Lifshitz) holography [3], and fluid dynamics [4]. The
relation between the thermal transport and geometry with
(and without) torsion was also discussed in Refs. [5,6]. The
torsional responses in relativistic systems were discussed in
Refs. [7–9].
While the coupling to NC geometry can be used in

any nonrelativistic field theory, we are mainly motivated
by applications to nonrelativistic fluid dynamics. In
fluid dynamics, in addition to the standard symmetry
constraints of field theory, there is an additional set of
conditions that ensure that solutions of Eq. (3) are
compatible with the (local) second law of thermody-
namics [10]. Recently these constraints became a subject
of active research in relativistic hydrodynamics [11,12].
It turns out that some of these constraints can be
obtained systematically, demanding that solutions of
Eq. (1) consistently describe thermal equilibrium in
the presence of static external sources [11,13]. Here
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we are interested in nonrelativistic applications of
these ideas.
The second result of this Letter is a construction of the

generating functional of Euclidean static correlation func-
tions consistent with local spacetime and gauge sym-
metries. Consistency of these static correlation functions
with stationary solutions of nonrelativistic hydrodynamics
provides constraints on the latter. We note here that
equilibrium analysis should be valid for rather general,
not necessarily Galilean invariant, systems. Throughout the
Letter we assume that we are in 2þ 1 dimensions, but most
of the analysis is valid in any dimension with obvious
modifications.
Coupling to Newton-Cartan geometry.—Conservation

laws (3) follow from the space and time translation
symmetries. In what follows we will introduce external
fields that naturally couple to momentum, energy, and
energy current by making these symmetries local.
Before going to general formulations, we consider an

example of free fermions. The action is given by

S ¼
Z

dtd2x
�
iΨ†∂0Ψ −

1

2m
ð∂AΨÞ†ð∂AΨÞ

�
: ð4Þ

In order to make this action coordinate independent—i.e.,
gauge the time and space translations—we introduce frame
fields (or vielbeins) Eμ

a and their inverse eaμ [14] and replace
the derivatives in Eq. (4) as follows:

∂A → Eμ
A∂μ; ∂0 → Eμ

0∂μ: ð5Þ

The second replacement can be understood as a material
derivative so that the vielbein Eμ

0 is the velocity field. Then
the action (4) takes the form

S ¼
Z

dVL;

L ¼
�
i
2
vμðΨ†∂μΨ − ∂μΨ†ΨÞ − hμν

2m
∂μΨ†∂νΨ

�
: ð6Þ

Our conventions are a;b;…¼0;1;2 and μ; ν;… ¼ 0; 1; 2;
also A; B;… ¼ 1; 2 and i; j;… ¼ 1; 2. General coordinate
transformations act on the Greek indices and local frame
transformations act on the Latin a; b;… indices.
We have defined a degenerate “metric” hμν ¼ δABEμ

AE
ν
B,

a 1-form nμ ¼ e0μ, and a vector vμ ¼ Eμ
0. Notice that the

spatial part of the metric hij is an (inverse) metric on a fixed
time slice: it is symmetric and invertible. The introduced
objects are not independent, but obey the relations

vμnμ ¼ 1; hμνnν ¼ 0: ð7Þ

These are precisely the conditions satisfied by the NC
geometry data [2,15,16]. Some detailed discussion of the

first order (i.e., using the vielbeins) formulation of the NC
geometry can be found in Refs. [17,18].
The action (6) can be viewed as an action (4) written in

an arbitrary coordinate system. The invariant volume
element is dV ¼ edtd2x, with e ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðeaμeaνÞ
p

. Because
of the spatial isotropy of Eq. (4), the vielbeins naturally
combine into the degenerate metric hμν. Similarly, the
temporal components of the vielbeins (denoted by vμ and
nμ) stand aside in Eq. (6), explicitly breaking the (local)
Lorentz symmetry down to SOð2Þ. If the physical system
were anisotropic the replacement (5) would still make
sense, but one would have to treat each vielbein as an
independent object, i.e., not constrained by any local
symmetries of the tangent space.
To couple a generic matter action to the NC geometry,

one has to proceed in the same way as in the example
considered above. Namely, one should modify the deriv-
atives according to Eq. (5). Then the objects vμ, nμ, and hμν

(NC data) will naturally arise (we assume spatial isotropy
from now on). When the 1-form nμ is not closed, we define
the Newton-Cartan temporal torsion 2-form [19] as

T μν ¼ ∂μnν − ∂νnμ: ð8Þ

In practice, it is convenient to use a particular para-
metrization of the NC background fields. Let us specify the
spatial part hij of the degenerate metric and assume that
nμ ¼ ðn0; niÞ and vμ ¼ ðv0; viÞ are also specified and that
they satisfy the first relation in Eq. (7). Then we find, from
other relations in Eq. (7),

hμν ¼
 n2

n2
0

− ni
n0

− ni
n0

hij

!
;

where we define ni ¼ hijnj, n2 ¼ ninjhij. In this para-
metrization the invariant volume element is given by
dV ¼ ffiffiffi

h
p

n0dtd2x, where we have denoted detðhijÞ ¼ h−1.
The momentum, stress, energy, and energy current are

identified as responses to the NC geometry as follows [19]:

Pi ¼ −v0
δS
δvi

; Tij ¼ −2
δS
δhij

; ð9Þ

ε ¼ −
�
n0

δS
δn0

− v0
δS
δv0

�
; JiE ¼ −n0

δS
δni

; ð10Þ

where we turn off the fields ni and vi after the variation
is taken.
The introduced NC geometry is general and reduces to

some cases considered in the literature. For example, the
choice nμ ¼ ð1; 0; 0Þ, v ¼ ð1; viÞ corresponds to the tor-
sionless NC background, which turned out to be convenient
in studying Galilean invariant actions [2,20–23].
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Another particular limit is given by nμ ¼ ðeψ ; 0; 0Þ,
vν ¼ ðe−ψ ; 0; 0Þ. This is an example of the NC geometry
with temporal torsion. The torsion is given by

T ¼ eψð∂iψÞdxi ∧ dt: ð11Þ

In this case the only nonvanishing component of the torsion
tensor is T 0i. This NC geometry essentially appeared in the
procedure introduced by Luttinger [1,24]. The field ψ is
precisely the gravitational potential introduced in Ref. [1].
The disadvantage of this choice of geometry is the absence
of the field ni that couples to the energy current.
In the following we consider a general case keeping all of

the components of NC geometry turned on.
Before proceeding let us illustrate how one can derive

expressions for conserved currents using the coupling to
NC geometry.
Consider a system of free fermions. We have already

introduced the NC fields into the action of free fermions in
Eq. (6). Then the direct application of Eq. (10), using
equations of motion and turning off NC fields after the
variations, we obtain the familiar expressions for energy
and energy current in flat space

ε ¼ −
1

2m
ð∂iΨÞ†ð∂iΨÞ; ð12Þ

JEi ¼ i
4m2

ð∂2Ψ†∂iΨ − ∂iΨ†∂2ΨÞ: ð13Þ

Equilibrium.—We construct the most general partition
function, consistent with time independent, local space and
time translations, and gauge symmetries. The partition
function can be written as a Euclidian functional integral,

W ¼ − ln tr exp

�
−
H − μ̄N

T̄

�
¼ − ln

Z
DΨDΨ†e−SE:

ð14Þ

Here we introduced a Euclidean action [25]

SE½fΨ;Ψ†g;Aμ; nμ; vμ; hij� ¼
Z

d2x
ffiffiffi
h

p I
1=T̄

0

dτn0LE;

ð15Þ

where fΨ;Ψ†g refers to a collection of matter fields. This
action is coupled to the NC geometry, as explained in the
previous section. We have also coupled the theory to the
external e=m field described by the vector potential Aμ.
The time independent field n0 can be viewed as an

inhomogeneous temperature TðxÞ defined according to

I
1=T̄

0

dτn0 →
I

1=TðxÞ

0

dτ0;
1

TðxÞ ¼
n0
T̄
: ð16Þ

The NC geometry allows us to introduce spatial variations
in the size of the compact imaginary time direction.
Rescaling the Euclidean time τ → τ0=T̄ in Eq. (15) and

correspondingly transforming the fields n0; A0; v0 we find
that the action depends on T̄ as follows:

SE ¼ SE

	
Ψ;Ψ†;

A0

T̄
;
n0
T̄
; v0T̄; Ai;

ni
n0

T̄; vi; hij


: ð17Þ

In (local) equilibrium, external fields do not depend on
Euclidean time. The generating functional W depends on
the temperature T and external sources. We also assume
thatW can be written as an integral of a local density so that

W¼
Z

d2x
ffiffiffi
h

p n0
T̄
P
�
A0

T̄
;
n0
T̄
;v0T̄;Ai;

ni
n0

T̄;vi;hij
�
; ð18Þ

where we have already replaced the integral over Euclidean
time by the overall factor 1=T̄. It is worth noting that results
derived from the Euclidean generating functional can be
used to obtain the zero frequency correlation functions in
real time upon a Wick rotation.
Local time shifts.—We are mainly interested in the

thermal transport, so from now on we set the external
field at vi ¼ 0 and parametrize v0 ¼ ð1=n0Þ≡ e−ψ in order
to satisfy Eq. (7). This field configuration is preserved by
the time independent space and time translations.
The transformation law of the external field ni under a

local time shift t → tþ ζðxÞ takes the form

δðe−ψniÞ ¼ −∂iζ; ð19Þ

i.e., the field e−ψni transforms like aUð1Þ gauge field under
a local time shift. This field can be regarded as a connection
on an S1 bundle over the base manifold, where S1 is the
thermal circle. The field strength is related to the NC
temporal torsion.
It is convenient to introduce Ai ¼ Ai − A0e−ψni.

This field transforms like a gauge field under electromag-
netic gauge transformations and it is invariant under local
time shifts.
Invariance of the generating functional with respect to

the transformation (19) implies a local conservation law of
the thermal current

JiQ ¼ −
T̄ffiffiffi
h

p
�

δW
δe−ψni

þ A0

δW
δAi

�
¼ JiE − A0Ji: ð20Þ

This current is conserved,

∇iJiQ ¼ 0; ð21Þ

where ∇iXi ¼ 1ffiffi
h

p ∂ið
ffiffiffi
h

p
XiÞ is the covariant divergence.

Generating functional in derivative expansion.—We
present the partition function as an expansion in derivatives
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of the external NC and electromagnetic fields. We consider
the following generating functional:

W ¼
Z

d2x
ffiffiffi
h

p 1

T
Pðμ; T;B; BEÞ; ð22Þ

where we have defined the local chemical potential and
temperature in terms of external fields,

1

TðxÞ ¼
eψ

T̄
; μðxÞ ¼ e−ψA0ðxÞ; ð23Þ

and defined gauge invariant (pseudo)scalars

B ¼ ϵij∂iAj; BE ¼ ϵij∂iðe−ψnjÞ: ð24Þ

Writing Eq. (22), we assumed that both B and B might be
large, while their derivatives are small and can be
neglected. We also assumed that the gradients of both μ
and T are small.
The generating functional (22) encodes various local

thermodynamic quantities and relations. For example, the
energy (in flat space) can be found with the help of
Eq. (10), appropriately modified for the presence of the
gauge field

ε ¼ T̄
δW
δeψ

þ TA0

δW
δA0

¼ ∂ðP=TÞ
∂ð1=TÞ − μ

∂P
∂μ

¼ P þ sT þ nμ; ð25Þ

where we made the identifications

nðxÞ ¼ T̄
δW
δA0

¼ −
∂P
∂μ ð26Þ

and

sðxÞ ¼ −
∂P
∂T : ð27Þ

The relation (25) suggests that Pðμ; T;B; BEÞ is the density
of the grand thermodynamic potential (in the presence of
external fields) and that Eq. (25) is the local version of the
known thermodynamic relation P ¼ E − T̄S − μ̄N.
It is instructive to find the pressure in the presence of

external fields, also known as internal pressure:

Pint ¼ T̄
δW
δhii

¼ Pð0Þ −MB −MEBE; ð28Þ

where we have introduced the magnetization M ¼
eψ ð∂P=∂BÞ and the energy magnetization ME ¼
eψ ð∂P=∂BEÞ, andPð0Þ is the pressure at zeromagnetic field.
The additional contribution to the pressure given by the

second term in Eq. (28) comes from the Lorentz force

acting on magnetization currents. The last term of Eq. (28)
gives a contribution similar to the one present in the
nonvanishing background field BE.
Magnetization currents.—While all transport currents

vanish in thermal equilibrium, there are still electric and
energy magnetization currents circulating in a material—
even at equilibrium. These currents cannot be measured in
transport experiments [24]. However, e.g., the electric
magnetization current can, in principle, be observed in
spectroscopy experiments or by measuring the magnetic
field created by moving charges. The energy current can (at
least in principle) be observed by the frame drag [26] due to
distortions in the gravitational field created by the flow of
energy. In the presence of the inhomogeneous external
fields, magnetization currents can flow in the bulk of the
material; otherwise, they are concentrated on the boundary
of the sample.
Knowing magnetization currents is important, as this

knowledge can be used to separate transport currents from
the magnetization ones for systems driven out of equilib-
rium [24]. Also, for a particular case of the chemical
potential lying in the excitation gap, the magnetization
currents are the only currents responsible for the Hall
effect [27].
In the following we consider both electric and thermal

magnetization currents. They are given, respectively, by

Ji ¼ T̄
δW
δAi

¼ ϵij∂jM; ð29Þ

JiQ ¼ ϵij∂jME: ð30Þ

The currents (29) and (30) are conserved in the presence of
arbitrary temperature profile TðxÞ, set by Eq. (23), and
coincide with the ones found in Refs. [24,28,29] at the level
of linear response.
We note here that the energy magnetization ME is

usually defined by Eq. (30), while the NC “magnetic field”
BE (usually denoted as Bg and referred to as gravimagnetic
field) is defined as a quantity thermodynamically conju-
gated to ME. In this work we clarified how one can
systematically introduce external fields ni in a nonrelativ-
istic system and couple the system to BE (24). Previous
approaches explicitly used the presence of Lorentz sym-
metry [26,29] and cannot be applied in a majority of
condensed matter systems.
Streda formulas.—It is possible to express the Hall

conductivity and other parity odd responses purely in
terms of the derivatives of thermodynamic quantities. We
define electric and thermal conductivities as

Ji ¼ ϵijðσH∂iμþ σTH∂iTÞ; ð31Þ

JiQ ¼ ϵijðκμH∂iμþ κH∂iTÞ: ð32Þ
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Comparing with Eqs. (29) and (30) we obtain, using the
Maxwell’s relations [30],

σH ¼
�∂M
∂μ
�

T;B;BE

¼
�∂n
∂B
�

T;μ;BE

; ð33Þ

σTH ¼
�∂M
∂T
�

μ;B;BE

¼
�∂s
∂B
�

T;μ;BE

; ð34Þ

κμH ¼
�∂ME

∂μ
�

T;B;BE

¼
� ∂n
∂BE

�
T;μ;B

; ð35Þ

κH ¼
�∂ME

∂T
�

μ;B;BE

¼
� ∂s
∂BE

�
T;μ;B

: ð36Þ

These are thermodynamic Streda-type formulas [31,32] for
the response coefficients.
Galilean and Lorentz symmetries.—So far we have

assumed that the (unperturbed) system under consideration
is gauge invariant, spatially isotropic and homogeneous,
and time translation invariant. In this general case there are
no additional relations between electric current, momen-
tum, and energy current. Several new relations appear if
additional symmetries are present. For simplicity, we
assume below that the underlying microscopic system
consists of charged particles of a single species or several
species with the same e=m (electric charge to mass) ratio.
If the system is Galilean invariant the electric current is

proportional to the momentum Ji ¼ ðe=mÞPi; therefore,
the magnetization density is proportional to the density of
the angular momentumM ¼ ðe=mÞLz. Then from Eq. (33)
we have

σH ¼ e
m

�∂Lz

∂μ
�

T;B;BE

; ð37Þ

that is, Hall conductivity can be expressed in terms of
derivatives of the angular momentum.
If the system is Lorentz invariant, then there is an

additional equality between momentum and the energy
current, as we pointed out in the introduction, JiE ¼ Pi, and,
therefore,ME ¼ Lz. Therefore, we have another version of
the Streda formula for thermal Hall conductivity [29],

κH ¼
�∂Lz

∂T
�

μ;B;BE

: ð38Þ

In a general case, when no additional symmetries are
present the angular momentum is not related to either
electric or thermal magnetization and the relations (37) and
(38) do not hold.
Conclusions.—To conclude, it is shown that coupling the

physical system to the Newton-Cartan geometry introduces
the appropriate sources for energy, momentum, and energy

current. Variations of the action with respect to different
components of the NC geometry give familiar expressions
for energy, momentum, and energy current densities. It
turns out that, in order to introduce the temperature
gradients, one has to couple a physical system to the
NC geometry with temporal torsion. We stress that the
formalism does not assume either Lorentz or Galilean
symmetry. Those symmetries can be imposed afterwards to
restrict the responses of the physical system.
The developed formalism was used to construct a general

local equilibrium partition function of a nonrelativistic
system. With the partition function at hand, known thermo-
dynamic relations have been obtained in the presence of
external gauge and Newton-Cartan fields. It was found that
upon linearization the resulting general expressions for
electric and thermal magnetization currents agree with the
linear response expressions known in the literature.
The constructed formalism is expected to have many

potential applications in condensed matter systems and
hydrodynamics. For example, the general geometric effec-
tive action constructed in the presence of the torsional NC
background will not be restricted by the Lorentz symmetry
and, therefore, is more natural in condensed matter context.
The Galilean symmetry can be implemented by adding
additional constraints on the action coupled to NC geom-
etry. The generalization to systems with internal degrees of
freedom such as spin may prove to be of interest in the
context of the spin Hall effect.

We acknowledge discussions with B. Bradlyn, A.
Cappelli, G. Monteiro, S. Moroz, M. Rocek, D. Son,
and especially K. Jensen. The work of A. G. A. was
supported by the NSF under Grant No. DMR-1206790.

Note added.—Recently, we were made aware of comple-
mentary results [33]. We have learned about Ref. [34],
where the NC geometry with torsion was related to the
energy transport in Galilean invariant systems.
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