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We consider the adiabatic evolution of glassy states under external perturbations. The formalism we use
is very general. Here we use it for infinite-dimensional hard spheres where an exact analysis is possible. We
consider perturbations of the boundary, i.e., compression or (volume preserving) shear strain, and we
compute the response of glassy states to such perturbations: pressure and shear stress. We find that both
quantities overshoot before the glass state becomes unstable at a spinodal point where it melts into a liquid
(or yields). We also estimate the yield stress of the glass. Finally, we study the stability of the glass basins
towards breaking into sub-basins, corresponding to a Gardner transition. We find that close to the
dynamical transition, glasses undergo a Gardner transition after an infinitesimal perturbation.
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Introduction.—Glasses are long-lived metastable states
of matter, in which particles are confined around an
amorphous structure [1,2]. For a given sample of a
material, the glass state is not unique: depending on the
preparation protocol, the material can be trapped in
different glasses, each displaying different thermody-
namic properties. For example, the specific volume of a
glass prepared by cooling a liquid depends strongly on the
cooling rate [1,2]. Other procedures, such as vapor
deposition, produce very stable glasses, with higher
density than those obtained by simple cooling [3,4].
When heated up, glasses show hysteresis: their energy
(specific volume) remains below the liquid one, until a
“spinodal” point is reached, at which they melt into the
liquid (see, e.g., [2], Fig. 1 and [4], Fig. 2).
The behavior of glasses under shear strain also shows

similarly complex phenomena. Suppose to prepare a glass
by cooling a liquid at a given rate until some low temper-
ature T is reached. After cooling, a strain γ is applied and
the stress σ is recorded. At small γ, an elastic (linear) regime
where σ ∼ μγ is found. At larger γ, the stress reaches a
maximum and then decreases until an instability is reached,
where the glass yields and starts to flow (see, e.g., [5],
Fig. 3(c) and [6], Fig. 2). The amplitude of the shear
modulus μ and of the stress overshoot increase when the
cooling rate is decreased, and more stable glasses are
reached.
Computing these observables theoretically is a difficult

challenge, because glassy states are always prepared
through nonequilibrium dynamical protocols. First-
principles dynamical theories such as mode-coupling
theory [7] are successful in describing properties of

supercooled liquids close to the glass state (including
the stress overshoot [8]), but they fail to describe glasses at
low temperatures and high pressures [9]. The dynamical
facilitation picture can successfully describe calorimetric
properties of glasses [10], but for the moment it does not
allow one to perform first-principles calculations starting
from the microscopic interaction potential. To bypass the
difficulty of describing all the dynamical details of glass
formation, one can exploit a standard idea in statistical
mechanics, namely, that metastable states are described by
a restricted equilibrium thermodynamics for times much
shorter than their lifetimes [11,12]. Within schematic
models of glasses, this construction was proposed by
several authors [13–16] and was formalized through the
Franz-Parisi free energy [16] and the “state following”
formalism [17–19].
In this Letter we apply the state following construction

[16–19] to a realistic model of glass former, made by
identical particles interacting in the continuum. For sim-
plicity, we choose here hard spheres in spatial dimension
d → ∞, where the method is exact because metastable
states have infinite lifetime [13,20,21]. We show that all the
properties of glasses mentioned above are predicted by this
framework, including the cooling rate dependence of the
specific volume (or the pressure) [1,2], the hysteresis
observed upon heating glasses [2–4], the behavior of the
shear modulus, and the stress overshoot [5,6]. Following
[20,22], our method can be generalized (under standard
liquid theory approximations) to experimentally relevant
systems in d ¼ 2; 3 with different interaction potentials, to
obtain precise quantitative predictions, as we discuss in the
conclusions.
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The state following construction.—The state following
formalism is designed to describe glass formation during
slow cooling of a liquid [19]. We present here a short
account of this construction; for a more detailed discussion
see [16–19] and [23].
Approaching the glass transition, the equilibrium

dynamics of the liquid happens on two well-separated
time scales [1,2]. On a T-independent fast scale τvib
particles essentially vibrate in the cages formed by their
neighbors. On the slow α-relaxation scale ταðTÞ, which
increases fast approaching the glass transition, cooperative
processes change the structure of the material. When
ταðTÞ ≫ τvib, the system vibrates for a long time around
a locally stable configuration of the particles (a glass), and
then on a time scale ταðTÞ transforms in another equivalent
glass. Hence, ταðTÞ is the lifetime of metastable glasses.
The liquid reaches equilibrium if enough different glass
states are visited; hence, the experimental time scale (e.g.,
the cooling rate) should be τexp ≫ ταðTÞ. For given τexp, the
glass transition temperature Tg is therefore defined by
τexp ¼ ταðTgÞ [1,2]. For T < Tg the system is confined into
a given glass with lifetime ταðTÞ ≫ τexp, which can thus be
considered an infinitely long-lived metastable state.
Although the system is strictly speaking out of equilibrium
in this regime, the slow relaxation is effectively frozen and

the material is confined in a thermodynamic equilibrium
state restricted to a given glass. In fact, if cooling stops at
some T < Tg, thermodynamic quantities quickly reach
time-independent values, that satisfy equilibrium thermo-
dynamic relations. Still, the “thermodynamic” state
depends on preparation history, and most crucially on
the temperature Tg at which the liquid fell out of
equilibrium. Note that aging effects can be neglected
here because they happen, for T < Tg, on time
scales τaging ≫ ταðTgÞ ∼ τexp.
This identification between out of equilibrium states and

long-lived metastable states, i.e., between dynamics and
thermodynamics, is the core of the state following con-
struction, and allows one to describe the thermodynamic
properties of glasses prepared by slow cooling through a
thermodynamics formalism [16–19]. Let us now briefly
review this formalism. Consider N interacting classical
particles, described by coordinates X ¼ fxigi¼1;…;N and
potential energy VðXÞ. During a cooling process with time
scale τexp, the system remains equilibrated provided
T ≥ Tg. Define R ¼ frig the last configuration visited
by the material before falling out of equilibrium; its
probability distribution is the equilibrium one at Tg,
PðRÞ ¼ exp½−VðRÞ=Tg�=ZðTgÞ (here kB ¼ 1). For
T < Tg, the lifetime of glasses becomes effectively infinite
[36]: the material visits configurations X confined in the
glass selected by R. This constraint is implemented
[16,17] by imposing that the mean square displacement
between X and R, ΔðX;RÞ ¼ ðd=NÞPN

i¼1ðxi − riÞ2, be
smaller than a prescribed value Δr. The evolution of this
glass is followed by changing its temperature T or applying
some perturbation γ that changes the potential to Vγ . The
free energy of the glass selected by R is, therefore,
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FIG. 2 (color online). Following glassy states prepared at φ̂g
upon applying a shear-strain γ. Shear-stress σ (main panel) and
reduced pressure p (inset) as a function of strain for different φ̂g.
Same styles as Fig. 1. Upon increasing shear strain, the states
undergo a Gardner transition at γGðφ̂gÞ. For γ > γG our RS
computation is unstable but it predicts a stress overshoot followed
by a spinodal point.
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FIG. 1 (color online). Following glasses in (de)compression.
Inverse reduced pressure d=p is plotted versus packing fraction
φ̂ ¼ 2dφ=d. Both quantities are scaled to have a finite limit for
d → ∞. The liquid EOS is d=p ¼ 2=φ̂. The dynamical transition
φ̂d is marked by a black dot. For φ̂g > φ̂d, the liquid is a
collection of glasses. The glassy EOS are reported as full colored
lines that intersect the liquid EOS at φ̂g. Upon compression, a
glass prepared at φ̂g undergoes a Gardner transition at φ̂Gðφ̂gÞ
(full symbols and long-dashed black line). Beyond φ̂G our
computation is not correct: glass EOS are reported as dashed
lines. For low φ̂g they end at an unphysical spinodal point (open
symbol). Upon decompression, the glass pressure falls below the
liquid one, until it reaches a minimum, and then grows again until
a physical spinodal point at which the glass melts into the liquid.
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Fg½T; γ;R� ¼ −T log
Z

dXe−Vγ ½X�=Tθ½Δr − ΔðX;RÞ�:

θðxÞ is the Heaviside function. Computing Fg½T; γ;R� is a
formidably difficult task, because the constraint ΔðX;RÞ ≤
Δr explicitly breaks translational invariance and prevents
one from using standard statistical mechanics methods.
One can simplify the problem by computing the average
free energy of all glasses that are sampled by liquid
configurations at Tg, under the assumption that these
glasses have similar thermodynamic properties. We obtain

Fg½T; γ;Tg� ¼ Fg½T; γ;R� ¼
Z

dR
e−VðRÞ=Tg

ZðTgÞ
Fg½T; γ;R�:

Note that Tg, which is dynamically selected out of
equilibrium, becomes a free parameter in the state follow-
ing construction. This average can be computed using the
replica trick [16], and here we use the simplest replica
symmetric (RS) scheme [16–18]. The parameter Δr is
determined by minimizing the free energy, which is given
in [23], Sec. I D.
This state following construction was previously applied

to spin glasses in [16–19,37] and describes perfectly the
properties of glasses obtained by slow cooling [19].
However, no attempt to apply it to realistic models of
glass-forming materials has been previously reported. Here,
we achieve this goal by applying the method to a hard
sphere system for d → ∞. Technically, the computation
uses the methods of [21] in the more complicated state
following setting. Because the details are not particularly
instructive, we report them in Supplemental Material [23],
and in the following we describe our main physical results.
Results: Compression.—As a first application of the

method, we consider preparing glasses by slow compres-
sion, which is equivalent, for hard spheres, to slow cooling
[20]. Note that for hard spheres temperature can be
eliminated by appropriately rescaling physical quantities.
The system is prepared at low density ρ, particle volume Vs
is slowly increased (equivalently, container volume is
decreased), and pressure P is monitored. In Fig. 1 we plot
the reduced pressure p ¼ βP=ρ, with β ¼ 1=T, versus the
packing fraction φ ¼ ρVs. At equilibrium, the system
follows the liquid equation of state (EOS). Above the
so-called dynamical transition (or mode-coupling theory
transition) density φd, glasses appear, and each equilibrium
liquid configuration at φg > φd selects a glass. As dis-
cussed above, φg is therefore a free parameter of the
state following construction, which can be used to select
different glasses corresponding to different preparation
protocols. In Fig. 1 we report the EOS of several glasses
corresponding to different choices of φg. The slope of the
glass EOS at φg is different from that of the liquid EOS,
indicating that when the system falls out of equilibrium
at φg, the compressibility has a jump, as observed

experimentally [20,38]. Following glasses in compression,
pressure increases faster than in the liquid (compressibility
is smaller) and diverges at a finite jamming density φjðφgÞ
[20]. However, before jamming is reached, the glass
undergoes aGardner transition [21,39], at which individual
glass basins become unstable. Because this transition was
discussed before [17,18,21,39], we do not insist on its
characterization, but note that we can compute precisely the
Gardner transition point φGðφgÞ for all φg (see [23] for
details). Interestingly, as observed in [17,37], the Gardner
transition line ends at φd, i.e., φGðφg ¼ φdÞ ¼ φd. This
implies that the first glasses appearing at φd are marginally
stable towards breaking into sub-basins, while glasses
appearing at φg > φd remain stable for a finite interval
of pressures before breaking into sub-basins. Yet, all
glasses undergo the Gardner transition at finite pressure
before jamming occurs [21].
For a glass selected at φg, when the density is higher

than φG, the simplest RS scheme we used is unstable, and
one should perform a more sophisticated computation
[17,18,21]. However, we observe that for large enough
φg the Gardner transition happens at very high pressure and
in that case our calculation is a good approximation to the
glass EOS at all pressures. For small φg instead, the RS
calculation gives a wrong prediction, namely, the existence
of an unphysical spinodal point at which the glass dis-
appears. We expect, based on the analogy with the results of
[18], that a correct calculation will fix this problem.
A given glass prepared at φg can be also followed in

decompression, by decompressing at a relatively fast rate
τdec such that τvib ≪ τdec ≪ τexp. In this case we observe
hysteresis (Fig. 1), consistently with experimental results
[2–4]. In fact, the glass pressure becomes lower than the
liquid one, until upon decreasing density a spinodal point
is reached, at which the glass becomes unstable and melts
into the liquid [40]. Note that pressure “undershoots” (it has
a local minimum; see Fig. 1) before the spinodal is
reached [40].
Results: Shear.—We investigate now the response of

glasses to a shear-strain perturbation. We consider a system
compressed in equilibrium up to a density φ̂g, where it
remains stuck into a glass. Now, instead of compressing the
system, we apply a shear-strain γ. In Fig. 2 we report the
behavior of shear-stress σ and pressure p versus γ. At small
γ we observe a linear response elastic regime, where σ
increases linearly with γ, σ ∼ μγ and pressure increases
quadratically above the equilibrium liquid value, pðγÞ ∼
pðγ ¼ 0Þ þ ðβR=ρÞγ2. Both the shear modulus μ and the
dilatancy R > 0 increase with φ̂g, indicating that glasses
prepared by slower annealing are more rigid.
Upon further increasing γ, glasses enter a nonlinear

regime, and undergo a Gardner transition at γGðφgÞ (Fig. 2).
Like in compression, we find γGðφdÞ ¼ 0, and γG increases
rapidly with φg. For γ > γGðφdÞ, the glass breaks into sub-
basins and a full replica symmetry breaking (fRSB)
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calculation is needed. Note that the RS computation
predicts a stress overshoot, followed by a spinodal point
where the glass basin disappears. We expect that the fRSB
computation gives similar results. The spinodal point
corresponds to the point where the glass yields and starts
to flow. The values of yield strain γY and of yield stress σY
are also found to increase with φg. These results are
qualitatively consistent with the experimental and numeri-
cal observations of [5,6].
Results: Compression followed by shear.—One could

also consider the case where (i) a liquid is slowly com-
pressed up to φg where it forms a glass, (ii) the glass is
compressed up to a certain pressure p (Fig. 1), and then
(iii) a shear-strain γ is applied. The response to shear strain
of these glasses compressed out of equilibrium is qualita-
tively similar to the one reported in Fig. 2, and we do not
report the corresponding curves. Instead, we report in Fig. 3
the behavior of shear modulus μ as a function of density φ
for different glasses prepared at different φg. For each glass,
we find that under compression μ increases with density,
and diverges at the jamming point where p → ∞. Note that,
as discussed above and in [21], describing the behavior
around the jamming density requires a fRSB computation,
that we did not perform here.
A useful thermodynamic identity gives the dilatancy

R=ρ ¼ ð1=2Þφ∂μ=∂φ [41] (see [23]). This implies that the
singular behavior of the shear modulus around jamming,
which itself is well captured by a fRSB computation [42],
should be directly reflected to the dilatancy, as pointed out
in [41]. Further work is needed to understand experimental
and numerical results [43–45].
Conclusions.—We have applied the state following

procedure, developed in the context of spin glasses
[16–19], to a microscopic model of a glass former, namely,
hard spheres. We considered for simplicity the limit

d → ∞, where the method we used is exact, but the
calculations can be generalized to obtain approximated
quantitative predictions in finite d. According to [20,46],
the simplest approximation is to use the results reported in
this Letter, replacing φ̂ ¼ 2dφ=½dyliqHSðφÞ�, yliqHSðφÞ being
the contact value of the pair correlation function in the
liquid phase, which can be obtained from a generalized
Carnahan-Starling liquid EOS [38]. This approximation is
expected to be good at large φg, but gives poor results for
φg ∼ φd. Systematic improvements over this approximation
can be obtained following the ideas of [20]. It is clear,
anyway, that the qualitative shape of the curves we obtained
in d → ∞ will not change in finite d, which is also
supported by the numerical simulations of [38].
We did not attempt here a more precise quantitative

comparison with experimental and numerical data, which
we leave for future work, but we showed that the state
following method is able to give predictions for many
physical observables of experimental interest, and repro-
duces a quite large number of observations. These include
the following. (i) The pressure as a function of density for
different glasses (Fig. 1), which displays a jump in
compressibility at φg [20,38], (ii) the presences of hyste-
resis and of a spinodal point in decompression in the
pressure-density curves (Fig. 1), where we show that more
stable glasses (those with higher φg) display a larger
hysteresis, consistently with the experimental observation
of [2–4], the behavior of pressure and shear stress under a
shear-strain perturbation (Fig. 2), where we show that
(iii) the shear modulus and the dilatancy increase for more
stable glasses (higher φg). (iv) The shear stress overshoots
before a spinodal (yielding) point is reached where the
glass yields and starts to flow (Fig. 2) [5,6]. Note, however,
that the spinodal (yield) point falls beyond the Gardner
transition and therefore its estimate, reported in Fig. 2, is
only approximate, a correct computation requires fRSB
[21]. Furthermore, (v) we predict that glasses undergo a
Gardner transition both in compression (Fig. 1) and in shear
(Fig. 2), and we locate the Gardner transition point (see
[23]). Finally, we (vi) compute the dilatancy and the shear
modulus everywhere in the glass phase (Fig. 3 and [23])
and their behavior close to the jamming transition
(see [23]).
This approach thus provides a coherent picture of the

phase diagram of glasses in different regimes, under
compression and under shear strain, at moderate densities
close to the dynamical glass transition and at high densities
(pressures) close to jamming. Future work should be
directed towards performing systematic comparisons
between theory and experiment, and improving the theory,
first by performing the fRSB computation, and second by
improving the approximation in finite dimensions.
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