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When the plasma beta (ratio of thermal to magnetic pressure) in the core of a tokamak is raised to values
of several percent, as required for a thermonuclear fusion reactor, continuous spectra of long-wavelength
slow magnetosonic waves enter the frequency band occupied by continuous spectra of shear Alfvén waves.
It is found that these two branches can couple strongly, so that Alfvén modes that are resonantly driven by
suprathermal ions transfer some of their energy to sound waves. Since sound waves are heavily damped by
thermal ion Landau resonances, these results reveal a new energy channel that contributes to the damping of
Alfvénic instabilities and the noncollisional heating of bulk ions, with potentially important consequences
for confinement and fusion performance.
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The realization of self-sustained “burning” fusion con-
ditions in tokamaks relies on, among other factors, the
achievement of high plasma beta (β) values around 5%, and
on the efficient heating of the bulk plasma by fusion
products, namely, fast alpha particles. Besides direct colli-
sional energy transfer, the fast ions may transfer their
energy to kinetically damped waves. This noncollisional
heating via wave-particle interactions is known as “alpha
channeling” [1,2]. Fast ions resonate with shear Alfvén
waves (SAW), so noncollisional heating occurs, for in-
stance, when the energy deposited by the fast ions in the
SAW continua is absorbed by the bulk plasma through
continuum damping (kinetic damping after phase
mixing). However, the resonant drive may overcome
continuum damping and destabilize energetic particle
modes (EPM) [3], causing premature loss of fast ions
from the plasma core before their energy is absorbed [4].
This has raised skepticism about the importance of
alpha channeling, but there are at least two reasons
for maintaining interest in this subject: (i) reliable quanti-
tative predictions remain to be made, especially for
burning plasmas, and (ii) there are yet unknown energy
channels.
Concerning point (i), both the amount of fast-ion profile

flattening and the amount of energy channeled to bulk ions
depend on the structure, frequency, and amplitude of the
modes, evolving nonlinearly in the presence of resonances
and competing sources and sinks. Therefore, reliable
predictions for alpha channeling will require self-consistent
long-time simulations, which is an active area of research
[5,6]. Concerning point (ii), in order to extract useful
information from such comprehensive simulations, it is
important to go beyond the common study of instabilities
and develop a broader understanding of the energy flows in
the system, including those through the rich spectrum of

damped modes. The discovery of such an energy channel is
reported here.
In this Letter, it is demonstrated numerically that, in

high-beta tokamak plasmas, fast ions may transfer energy
to bulk ions through the resonant excitation of modes that
reside inside the SAW continuum and are coupled to slow
magnetosonic waves (SMW). At low β (<1%), such
coupling occurs only inside the low-frequency gap of
the SAW continuum opened by finite plasma compress-
ibility [7], where it gives rise to Alfvén-acoustic gap modes
[8–10]. These low-frequency modes are strongly affected
by kinetic effects [11–13]. We show that, when β is raised
to higher values (>1%), maxima of SMW continua rise
above the gap and enter the SAW continua. These maxima
support radially extended standing waves, named global
slow magnetosonic eigenmodes (GSME), which are
capable of coupling to nearby SAW continua and tapping
energy from EPMs. Ion Landau damping of SMWs [14]
will transfer that energy to bulk ions.
As a working example, we use JT-60U shot E039672,

which was part of an experimental campaign performed to
explore fast-ion dynamics in parameter regimes relevant to
burning plasmas by producing high values of beta and
injecting a pair of 400 keV negative-ion-based neutral
beams (NNB) [15]. Figure 1 shows the numerically
reconstructed equilibrium configuration, with β0 ¼ 3.6%
at the center (r ¼ 0). After applying an initial perturbation,
the plasma response is simulated by solving the full set of
single-fluid magnetohydrodynamic (MHD) equations
as an initial value problem, using the MHD module of
the code MEGA [16,17] and a setup similar to that in
Refs. [18,19]. The fluctuations of the MHD velocity
vector δU and pressure δP are measured, mapped to
magnetic flux coordinates ðr; ϑ; ζÞ, and Fourier-analyzed
in space as
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δUðr;ϑ; ζ; tÞ ¼
Xnmax

n¼−nmax

e−inζ
Xmmax

m¼0

δum;nðr; tÞeimϑ

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
δunðr;ϑ;tÞ

; ð1Þ

where 0 ≤ r ≤ a is the minor radius, and m and n are the
mode numbers for the poloidal and toroidal angles ϑ and ζ.
In the following, the time t and angular frequency ω are
normalized by the Alfvén frequency at the plasma center,
ωA0 ¼ vA0=R0, and the minor radial coordinate r is
normalized by its boundary value a. The aspect ratio of
the major and minor radii of the plasma is R0=a ≈ 3.4. We
focus on long-wavelength modes in the plasma core
(nq ∼m≲ 6) with frequencies in the SAW continuum,
which justifies the use of MHD as a discovery tool [20].
Figure 2 shows spectrograms of MHD velocity fluctua-

tions with toroidal mode number n ¼ 3, which are com-
puted on the outer midplane (ϑ ¼ 0) as

δunðr;ωÞ ¼
Z

dtδunðr; 0; tÞHðt − t0Þeiωt; ð2Þ

where Hðt − t0Þ is a Hanning window for the Fourier
transform of the time interval t0 − twin=2 ≤ t ≤ t0 þ twin=2.
The spectrum of the toroidal component δuζ in Fig. 2(a) is
dominated by SMWs and the radial component δur in
Fig. 2(b) by SAWs. The signals are interpreted by com-
parison with continuous spectra computed as described in
Refs. [7,21]. The full MHD continua in Fig. 2(a) contain
both branches with Alfvénic (A) and sound (S) polar-
izations, the frequencies of which will be denoted by ωAðrÞ
and ωSðrÞ. A slow-sound approximation allows us to
isolate the Alfvén continua ωAðrÞ shown in Fig. 2(b).
Some branches are labeled with poloidal mode numbers
m�

S=A, where the superscripts identify the sign of k∥, the
wave number parallel to the magnetic field B, which is
defined as

−i
B
B
· ∇ ↔ k∥ðrÞ ¼

1

R0

�
n −

m�

qðrÞ
�

≷ 0: ð3Þ

Figure 1(b) shows that the qðrÞ profile, which measures
the magnetic field pitch, rises with increasing radius r,
whereas βðrÞ decreases. This produces maxima on sound
continuum branches ωSðrÞwith k∥ > 0. Particular attention
should be paid to the maxima of the ωSðrÞ branches with
mþ

S ¼ 2; 3, and 4 in Fig. 2(a): they overlap with Alfvén
continua ωAðrÞ and exhibit strong responses both in the δuζ
and δur spectra in Figs. 2(a) and 2(b). These couplings and
the associated modes, which are encircled with dashed lines
in Fig. 2, are the subject of this Letter.
In order to study the role of β, a second equilibrium with

profiles similar to Fig. 1 but lower pressure was con-
structed. The MHD responses obtained for β0 ¼ 1.7% and
3.6% are compared in Fig. 3. The δur spectra in Figs. 3(a)
and 3(b) show how three discrete MHD modes labeled M1,
M2, and M3 are locked to the maxima of the sound
continua ωSðrÞ with poloidal mode numbers mþ

S ¼ 1; 2,
and 3, which means that the mode frequencies ω scale
approximately as ðβΓÞ1=2. This estimate is based on the
SMW dispersion relation in the local limit, ω2

S ¼
k2∥Sv

2
AβΓ=2. Here, the specific heat ratio is Γ ¼ 5=3.

Ignoring geometric effects (toroidicity, shaping), the con-
dition ω2

S ∼ ω2
A ¼ k2∥Av

2
A can be written as

jnqðrÞ −mAj2=jnqðrÞ −mSj2 ∼ βðrÞΓ=2; ð4Þ

and determines how large β must be to allow the frequen-
cies of harmonics ðmS; nÞ and ðmA; nÞ to match. Mode M2
in Fig. 3 satisfies Eq. (4) up to a factor 2. The circumstances
under which this necessary condition becomes sufficient
for SMWs and SAWs to couple strongly and form a discrete
MHD mode remain to be understood. Apparently,
dωS=dr ≈ 0 is an important criterion. Geometric and
kinetic effects may also play a role.
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FIG. 1 (color online). MHD equilibrium. (a) Pressure contours.
(b) Radial profiles of the safety factor qðrÞ and plasma beta βðrÞ. Minor radius r / a

ω
 / 

ω
A

0

(b) |δu
r
|(r,ω) and SAW continua

0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

Minor radius r / a

[k
H

z]

(a) |δuζ|(r,ω) and full MHD continua

0.2 0.4 0.6 0.8 1
0

20

40

60

S
A

W
 g

ap
 d

u
e 

to
co

m
p

re
ss

ib
ili

ty

T
o

ro
id

ic
it

y−
in

d
u

ce
d

 g
ap

 

F
re

qu
en

cy

F
re

qu
en

cy

m
A
+=4 m

A
−=5

m
A
+=5

m
A
−=6

m
S
+=1

m
S
+=2

m
S
+=3

m
S
+=4

FIG. 2 (color online). Spectrograms of MHD responses for
β0 ¼ 3.6% and n ¼ 3, computed using Eq. (2) with twin ¼ 1100
for (a) the toroidal δuζ and (b) radial velocity component δur.
The color scale is logarithmic, with strongly responsive regions
(or slowly decaying modes) appearing red to orange. Lines and
dots indicate full MHD continua in (a) and SAW continua in (b).
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The radial profiles of individual poloidal harmonics,
from which mode M2 is composed, are shown in
Fig. 3(c)–(f). One can see how the dominant poloidal
mode numbers are determined by the nearby continua.
For β0 ¼ 1.7%, the frequency analyzed is ω0 ¼ ωðM2Þ ¼
0.186, and Fig. 3(c) shows that the structure of δurðrjω0Þ is
dominated by the m ¼ 5 harmonic. For β0 ¼ 3.6%, the
frequency is ω0 ¼ ωðM2Þ ¼ 0.257, and Fig. 3(d) shows
that δurðrjω0Þ is dominated by m ¼ 5 and 6. The magni-
tude of them ¼ 2 harmonic in Figs. 3(c) and 3(d) is smaller
than that of m ¼ 5 by a factor ∼0.05–0.1, so the radial
velocity component δur of mode M2 is dominated by the
SAW. In contrast, the toroidal velocity component δuζ in
Figs. 3(e) and 3(f) is clearly dominated by the SMW
with m ¼ 2.
The global structure of mode M2 and its evolution for

β0 ¼ 3.6% is shown in Fig. 4. During one half of the wave
period T0 ¼ 2π=ω0 ¼ 22.4, where ω0 ¼ ωðM2Þ ¼ 0.257,
five snapshots are taken and labeled (a)–(e) as indicated in
the top panel of Fig. 4. Rows (P) and (S) of Fig. 4 show that
the SMW component of the mode has the form of a

standing sound wave with dominant harmonic
ðm; nÞ ¼ ð2; 3Þ. Naturally, the pressure fluctuation δP lags
behind the toroidal velocity fluctuation δuζ by T0=4. As
indicated by arrows in snapshots (P-a) and (S-a), there is an
apparent outward propagation of the wave front, which
indicates that the standing SMWs at larger radii lag behind
those at smaller radii. The radial velocity fluctuation δur,
which is plotted in row (A) of Fig. 4 and represents the
SAW component of the mode, exhibits similar pulses in the
region 0.2≲ r≲ 0.6. This suggests that the pressure
fluctuation of the SMW component drives the SAW
component. Between successive pulses, one can observe
a clockwise rotation of the δur fluctuations in the region
0.4≲ r≲ 0.6, as indicated by the arrows in Fig. 4, (A-c)
and (A-d). This is the typical behavior of a SAW when it
propagates parallel to B. The above results may be
summarized as follows.
1. Discrete MHD modes with slow-sound polarization

are found in regions where the frequencies ωSðrÞ of SMWs
with poloidal mode number mþ

S have a weak radial
dependence, dωS=dr ≈ 0 [Fig. 2(a)]. Our acronym for such
a standing SMW [Fig. 4] is global slow magnetosonic
eigenmode (GSME).
2. For β ≳ 1%, GSMEs overlap with and couple to SAW

continua ωAðrÞ [Fig. 2(b)]. This coupling manifests itself in
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the excitation of SAWs [Fig. 3], which exhibit pulsations as
well as propagation parallel to B [Fig. 4]. The frequency of
the resulting discrete mode is controlled by the β-dependent
frequency of its GSME component, so it is called beta-
induced Alfvén continuum mode (BACM).
3. The Alfvénic δur component of a BACM reflects the

structure of the SAW spectrum and its geometric couplings.
For instance, near an accumulation point of the toroidicity-
induced gap [cf. Fig. 2(b)], δur contains multiple poloidal
harmonics mA with comparable amplitudes [Fig. 3(d)], so
that it bears similarity to a toroidicity-induced Alfvén
eigenmode (TAE) [22] and its “kinetic” counterparts
(KTAE) [23], here produced by resistivity [22].
The energy transfer between SMW and SAW, which

underlies the formation of BACMs, works also in the
opposite direction: SMWs are excited when the SAW
component of a BACM is driven by fast ions. This is
demonstrated in Fig. 5, where the spectrograms and mode
structures of fast-ion-driven instabilities during their expo-
nential growth phase are shown. The simulations were
performed with the hybrid code MEGA [16,17], using the
NNB ion distribution shown in Fig. 4(d) of Ref. [19] and
the same cases as in Fig. 3 above.
For β0 ¼ 1.7%, Figs. 5(a) and 5(c) show that the NB-

driven mode has a peak near ðr;ωÞ ≈ ð0.3; 0.29Þ, which is
close to mode M1 associated with the mþ

S ¼ 1 branch in
Fig. 3(a). Indeed, a strongm ¼ 1 harmonic is present in the
δuζ component in Fig. 5(e). For β0 ¼ 3.6%, Figs. 5(b) and
5(d) show that the NB-driven mode has a peak near
ðr;ωÞ ≈ ð0.4; 0.28Þ, which is close to mode M2 associated
with the mþ

S ¼ 2 branch in Fig. 3(b). Indeed, a strong
m ¼ 2 harmonic is present in the δuζ component Fig. 5(f).
These results show that EPMs couple to nearby BACMs,
which means that energy flows from the EPM (resonantly
driven SAW) to parasitic SMWs.
In summary, it was demonstrated numerically that, in a

tokamak with sufficiently high β (here 1.7–3.6%), maxima
of sound continua ωSðrÞ and the associated global slow
magnetosonic eigenmodes can overlap with Alfvén con-
tinua ωAðrÞ. The two branches are found to couple,
producing GSMEs with Alfvénic components, which we
call beta-induced Alfvén continuum modes. Finally, it was
demonstrated that fast-ion-driven shear Alfvén instabilities
can couple to sound waves via BACMs. The influence of
kinetic effects on the efficiency of such couplings remains
to be quantified. Apart from this, the use of MHD is
justified by the fact that the modes studied are localized in
the plasma core, have long wavelengths, and frequencies
above the SAW gap opened by compressibility [20].
The above results have potentially important implica-

tions. Within the resistive MHD model used here, the
exponential decay rate of the BACM pulses in Fig. 4 is
γ ∼ −10−3. The exaggerated resonant fast-ion drive in the
initial-value simulations reported in Fig. 5 easily exceeds
that by an order of magnitude. In self-consistent long-time

simulations [5,6], the drive does not usually grow that
strong. Moreover, when kinetic thermal ion effects are
included, SMWs will be subject to ion Landau damping,
which is strong unless Te ≫ Ti [14]. Therefore, it is
expected that, in present-day beam-heated tokamaks
(Te ≲ Ti) and burning plasmas (Te ≳ Ti), fast-ion-driven
modes that overlap with BACMs in radius r and frequency
ω are subject to enhanced damping. Consequently, BACMs
may reduce the amount of energy contained in undesirable
Alfvénic fluctuations while enhancing desirable noncolli-
sional heating of bulk ions. In other words, BACMs act as
channels that convert expansion free energy contained in
the gradient of the fast-ion pressure profile into thermal
energy of bulk ions. These effects and their implications for
the realization of burning plasmas should be examined
through further research.
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