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We study the indentation of a thin elastic film floating at the surface of a liquid. We focus on the onset of
radial wrinkles at a threshold indentation depth and the evolution of the wrinkle pattern as indentation
progresses far beyond this threshold. Comparison between experiments on thin polymer films and
theoretical calculations shows that the system very quickly reaches the far from threshold regime, in which
wrinkles lead to the relaxation of azimuthal compression. Furthermore, when the indentation depth is
sufficiently large that the wrinkles cover most of the film, we recognize a novel mechanical response in
which the work of indentation is transmitted almost solely to the liquid, rather than to the floating film. We
attribute this unique response to a nontrivial isometry attained by the deformed film, and we discuss the
scaling laws and the relevance of similar isometries to other systems in which a confined sheet is subjected
to weak tensile loads.
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When an elastic sheet is subjected to external forces, it is
often implicitly assumed that the work done is stored in the
deformed sheet. Under purely tensile loads, the work is
stored primarily by stretching energy. When the forces are
purely compressive, as in uniaxial buckling, the strain is
typically negligible, and the work is instead stored as
bending energy [1]. Under more complicated compressive
forces, such as those required to confine a sheet in a box
[2], the work is stored in localized (stress-focusing) zones
that involve bending and stretching. In this Letter, we report
a new response exhibited by the indentation of an elastic
film floating at a liquid-gas interface. We show that for
sufficiently large indentations, only a negligible fraction of
the work done by the indenter is stored as elastic energy—
the majority is stored in the gravitational and surface
energies of the liquid.
Interest in the indentation of elastic objects includes a

range of metrological applications. Just as one tests an
object’s stiffness by poking it, controlled indentation is
used in the measurement of internal pressure within
polymeric [3] and biological [4–8] capsules and to deter-
mine the modulus of thin membranes [9]. These applica-
tions motivated theoretical studies of indented spherical
shells, which suggested that “mirror buckling” [10]
[Fig. 1(a)] occurs in the presence of an internal pressure
[8]. Mirror buckling is the simplest possible isometric (i.e.,
strainless) deformation of an infinitely thin shell, so the
work done in indenting the shell is nearly independent of
the elastic moduli; instead, it goes into compressing the gas
within the shell [8].
In contrast to shells, the indentation of elastic sheets

is highly sensitive to tension. If a sheet is not under
tension, indentation typically leads to the formation of a

developable cone (d cone) [11–13], which is isometric
everywhere except within a small region around the
indenter [Fig. 1(b)]. The formation of this nearly isometric
shape involves large vertical deflections of the initially
planar sheet and is therefore unattainable when vertical
displacements are penalized. This is the case for thin elastic
films floating on a liquid as formed by vulcanization of a
liquid polymer drop, in which case an unknown pre-stress
is hypothesized [14], or by deposition, in which case the
liquid surface tension acts at the film’s edge [15].
Experiments on the latter system are better controlled than
the former and show that indentation gives rise to a shape
full of radial wrinkles that transform into sharp folds
beyond a threshold indentation [15].
The striking difference between the observed wrinkled or

folded shape and the nearly isometric d cone, was inter-
preted in [15] as an indication of considerable strain in the
film induced by the combination of indentation and
boundary tension. Here we focus on the wrinkle pattern
and show that wrinkling reveals a new isometry of the film
with the strain at the preindentation level. As a result, the
indentation force exhibits a nontrivial dependence on the
surface tension and density of the liquid, but it is inde-
pendent of the film’s elastic moduli. This type of isometry
is novel in the elasticity of thin bodies [2], being achieved
only in the doubly asymptotic limit of weak applied tension
and small bending stiffness; we therefore refer to it as an
asymptotic isometry.
Our experimental setup consists of polystyrene films

(Young’s modulus E ¼ 3.4 GPa, Poisson ratio ν ¼ 0.33,
and radius Rfilm ¼ 1.14 cm) floating at the surface of
deionized water [16]. The interfacial tension, γlv, was
varied in the range 36 mN=m ≤ γlv ≤ 72 mN=m using
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surfactant. The thickness of the film, t, satisfied 85 nm ≤
t ≤ 246 nm [17]. Stainless steel needles (tip radii
rtip ≈ 25 μm; 135 μm) were used to impose a vertical
displacement, δ, at the center of the film. Indentations
up to δ ≈ 0.75 mm were applied and measured to within
10 μm. The deformed film was viewed from above using a
microscope.
Our theoretical study is based on the Föppl–von Kármán

(FvK) equations for an elastic film, with stretching modulus
Y ¼ Et and bending modulus B ¼ Et3=12ð1 − ν2Þ floating
on a liquid of density ρl, subject to tension γlv at its
edge and a localized indentation force F causing a
vertical displacement δ at r ¼ 0. We assume that the
film’s radius Rfilm is much larger than the capillary length
lc ¼ ðγlv=KfÞ1=2, where Kf ¼ ρlg.
It is useful to identify the dimensionless groups in

the problem by describing the characteristic behavior of
the film as δ increases [Fig. 1(c)]. For very small δ, the
response is similar to that of a fluid membrane: the stress
remains close to its preindentation state, σrr ≈ σθθ ≈ γlv,
and the vertical deformation ζðrÞ decays over a horizontal
distance lc [Fig. 1(c)]. As δ is increased, the indentation-
induced strain, ∼ðδ=lcÞ2, leads to a noticeable inhomoge-
neity in the stress [Fig. 2(a)]: the radial stress σrrðrÞ

decreases monotonically towards γlv for r ≫ lc, while
the hoop stress σθθðrÞ decreases more sharply, overshooting
γlv before approaching γlv from below. Intuitively, this
occurs because indentation causes material circles to be
pulled inwards and become relatively compressed. If the
indenter’s tip is sufficiently small, this purely geometric
effect is governed only by the “confinement ratio”
ðδ=lcÞ2=ðγlv=YÞ between the indentation-induced strain
and the purely tensile strain caused by surface tension. We
therefore introduce the dimensionless indentation depth

~δ ¼ δ

lc
ðY=γlvÞ1=2; ð1Þ

which determines the stress profiles fully. As ~δ increases
above a threshold ~δc, analysis of the FvK equations shows
that the hoop stress becomes compressive (σθθ < 0) within a
narrow annulus [blue solid curve, Fig. 2(a)]. As these films
are very thin, a compressive hoop stress causes wrinkling
[Fig. 2(b)]. For a filmwith infinite radius, numerical analysis
of the FvK equations yields ~δc ≈ 11.75, in good agreement
with our experiments for a range of film thicknesses,
tensions, and indenter sizes [Fig. 3(a)].
Two crucial phenomena occur as the indentation ampli-

tude is increased above ~δc. First, the wrinkled zone
expands: a detailed calculation [18] shows that the outer
radius of the wrinkled zone is LO=lc ∼ ~δ3=2, so that
wrinkles reach the film’s edge when ~δ ∼ ðRfilm=lcÞ2=3.

(c)

(b)

(a)

FIG. 1 (color online). (a) Schematic illustration of the inden-
tation of a very thin axisymmetric shell with or without an
internal pressure, which tends to an isometric mirror buckling
deformation [8,10]. (b) Indenting a sheet with free boundaries
leads to a d cone, which is isometric everywhere except close to
the indenter [11,12]. (c) Schematic illustration showing the
evolution of a floating film subject to increasing indentation,
~δ: preindentation state (upper, flat); at small indentation (~δ ≪ ~δc,
second from top), the tension is approximately uniform; at
intermediate indentation (~δc < ~δ ≪ R2=3, second from bottom),
the hoop stress is compressive in an annular wrinkled region
(light blue); at large indentation (~δ ≫ R2=3, bottom), wrinkles
cover the entire film except for r < LI (black).
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FIG. 2 (color online). The profiles of the hoop (solid curves)
and radial (dashed curves) stresses within an indented,
unwrinkled film (with R ≫ 1) at indentation depths ~δ ¼ 7.5
(red curves) and ~δ ¼ 15 (blue curves). Notice that σθθ is negative
for intermediate values of r when ~δ ¼ 15, so that sufficiently thin
films will, in fact, wrinkle. (b) Just beyond the onset of instability
(δ ¼ 0.48 mm), wrinkles are confined to an annulus
LI ≤ r ≤ LO. (c) Ultimately wrinkles reach the edge of the film
(here δ ¼ 0.56 mm) and wrinkles occupy LI ≤ r ≤ Rfilm.
Here t ¼ 85 nm.
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Second, the thinness of the film means that the compressive
hoop stress is completely relaxed by wrinkling: σθθðrÞ ≈ 0,
a qualitative change from the prebuckled and compressive
(but unwrinkled) profiles [the solid red and blue curves,
respectively, in Fig. 2(a)]. We therefore use the far
from threshold (FT) approach, valid in the singular limit
of zero bending stiffness [19,20]. These two phenomena
are characterized by the dimensionless radius, R, and
“bendability,” ϵ−1 [21], of the film, where

R ¼ Rfilm=lc; ϵ−1 ¼ γlvl2
c=B: ð2Þ

For our experiments, ϵ≲ 10−5.
In the FT approach the energy is written

U ¼ Udom þ Usub, with Usub being the subdominant
energy governed by the bending cost of wrinkling, which

vanishes as ϵ → 0, and Udom the dominant energy, which
remains finite as ϵ → 0. Minimization of Usub determines
the number of wrinkles. In the current study we employ
tension field theory [19] (minimizing Udom) to determine
the mean deflection profile ζðrÞ and the extent of the
wrinkles.
We write the axisymmetric FvK equations using an Airy

potential ψ (so that σrr ¼ ψ=r and σθθ ¼ ψ 0). The vertical
force balance reads

B∇4ζ −
1

r
d
dr

�
ψ
dζ
dr

�
¼ −Kfζ −

F
2πr

δðrÞ; ð3Þ

where F is the pointlike indentation force, found as part of
the solution for a given indentation. The compatibility of
strains in the unwrinkled zone (where both σrr and σθθ are
tensile) gives [1]

r
d
dr

�
1

r
d
dr

ðrψÞ
�
¼ −

1

2
Y

�
dζ
dr

�
2

: ð4Þ

We note that Eqs. (3) and (4) are invariant under ζ → −ζ,
F → −F; our results therefore apply equally to the cases of
pushing down on (considered here) and pulling up on [15] a
floating membrane. Invoking tension field theory, we
neglect the bending term in Eq. (3), and replace Eq. (4)
by ψ ¼ constant in the wrinkled zone (since σθθ ¼ 0) [17].
We turn now to large indentations ~δ ≫ R2=3, where the

wrinkles cover the whole film except in 0 < r < LI [see
Fig. 2(c)]. Noting that σrrðRfilmÞ ¼ γlv and that σθθ → 0 in
the wrinkled zone, we find that σrrðrÞ ¼ γlvRfilm=r
for LI < r < Rfilm; Eq. (3) then reduces to Airy’s
equation [22]:

ζðrÞ ¼ AoutAiðr=lcurvÞ; lcurv ¼ R1=3lc: ð5Þ

Here lcurv, which increases with film size ∼R1=3
film, replaces

lc as the decay length of membrane deflections.
The prefactor Aout and the inner radius, LI , are found by

patching the wrinkled zone to the unwrinkled core
(r < LI). In the limit ~δ ≫ R2=3 we find, using standard
techniques [17,23–25], that Aout ≈ −δ=Aið0Þ and the radial
displacement at the edge of the film approaches a limiting
value:

urðRfilmÞ ≈ −0.243δ2=lcurv; ð6Þ
a result whose importance will become apparent shortly.
Our asymptotic calculations also reveal that

LI

lcurv
≈ 6.20ð~δ=R2=3Þ−2 ⇒ LI ∼

R5=3
filmγ

5=3
lv

YK2=3
f

δ−2: ð7Þ

At the scaling level, Eq. (7) can be understood by noting
that in the tensile core the indentation-induced radial
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FIG. 3 (color online). (a) Experimentally measured threshold
indentation for wrinkling, δc, as a function of lcðγlv=YÞ1=2.
Experiments with varying film thickness (59 nm ≤ t ≤ 246 nm),
γlv ¼ 72 mN=m are shown for indenter radii rtip ¼ 135 μm
(filled triangles) and rtip ¼ 25 μm (filled circles). Experiments
with varying surface tension coefficient (36 mN=m ≤ γlv ≤
72 mN=m) and t ¼ 121 nm (filled squares). The theoretical
prediction for R ≫ 1, ~δc ≈ 11.75, is also shown (dashed line).
Good agreement with the experiment justifies our neglect of
indenter size and any (hypothesized) manufacture-dependent pre-
stress, which were both attributed crucial roles previously [14].
(b) The inner wrinkle radius, r ¼ LI , decreases with increasing
indentation, ~δ, when wrinkles reach the film’s edge. Experiments
with γlv ¼ 72 mN=m and t ¼ 85 nm (open squares), t ¼ 121 nm
(open circles), t ¼ 158 nm (open triangles), t ¼ 207 nm (×), and
t ¼ 246 nm (stars). Experiments with t ¼ 121 nm and γlv ¼
58 mN=m (diamonds), γlv ¼ 50 mN=m (right filled triangles),
and γlv ¼ 42 mN=m (left filled triangles). The prediction of the
FT theory (solid curve) and the asymptotic result (7) (dashed line)
are also shown. The wrinkle number scales similarly to that found
in other studies [26] (data not shown).
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stress ∼Yðδ=lcurvÞ2, whereas in the wrinkled zone
σrr ¼ γlvRfilm=r. Continuity of the radial stress at r ¼ LI
yields the scaling in Eq. (7). Figure 3(b) shows that this
result agrees well with numerical solutions of the full
problem and with experiments. Strikingly, Eq. (7) shows
that the size of the tensile core is affected by all physical
parameters in the problem (except the bending modulus).
Our calculation also yields the indentation force

F ≈ 4.581γlvR2=3δ, consistent with previous measurements
[15,17]. Two features of the scaling F ∼ γ2=3lv K1=3

f R2=3δ are
surprising. First, F ∝ δ, even though the FvK equations are
highly nonlinear. Second, the force is independent of the
elastic moduli of the film. Understanding this mechanical
response requires reconsideration of the dominant energy
of the wrinkle pattern:

Udom ¼ −ðWindent þWsurfÞ þ ðUgpe þ UstretchÞ: ð8Þ

Here Windent;Wsurf are the work done by the indentation
force and the surface tension acting at the edge of the film,
respectively. Ugpe; Ustretch are the gravitational energy
of the displaced liquid and the elastic energy of the film,
respectively. The work done by the indentation force
Windent ¼

R
Fdδ ∼ γlvR2=3δ2. One might assume that

Windent would be transmitted to the elastic energy Ustretch
due to the tensile components of the compression-free
stress field. However, integrating the strain energy density
σ2ij=Y, we obtain Ustretch=Windent ∼ ð~δ=R2=3Þ−2 ≪ 1.
Indeed, using Eqs. (5) and (6) to evaluate the work Wsurf ∼
RfilmγlvurðRfilmÞ of the surface tension and the energetic
costUgpe∼Kf

R Rfilm
0 ζ2rdr of the vertically displaced liquid,

we find the asymptotic relation:

for ϵ−1 ≫ 1; ~δ ≫ R2=3∶ Windent → −Wsurf þ Ugpe: ð9Þ

This energetic structure describes a novel mechanical
response of an elastic film, whereby the work of the
indenter is transmitted predominantly to the subphase
(increasing gravitational energy and uncovering the surface
area of the liquid), while an asymptotically negligible
fraction is stored as elastic energy in the film. This simple
energetic structure reflects a nontrivial geometric feature:
the wrinkled film becomes isometric to its preindentation
state in the doubly asymptotic limit of small bending
modulus (ϵ ≪ 1) and small exerted tensile strain [since ~δ ≫
R2=3 ⇒ ðγlv=YÞ ≪ urðRfilmÞ=Rfilm by Eq. (6)]. In this
doubly asymptotic limit, the hoop strain εθθ is eliminated
and asymptotic isometry follows from Eqs. (5) and (6),
which yield the elimination of radial stretching in the limit
~δR−2=3 → ∞ [the apparent stretching,∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2þl2

curv

p
−lcurv,

is completely canceled by the lateral displacement urðRfilmÞ
of the edge]. Thus, the formation of wrinkles at negligible
energetic cost enables the metric of the film to remain
almost identical to its preindentation state, even though the

film suffers a large deflection, Eq. (5), that is determined by
indentation, gravity, and surface tension. In other words,
the film lies in a “no-man’s land”—too stiff to be stretched
significantly (since the applied tensile strain γlv=Y is small)
and yet perfectly deformable (since the bending modulus B
is also small).
In conclusion, we have shown that an indented floating

film starts with a purely tensile response but evolves, with
the aid of wrinkles, into a state that is asymptotically
isometric to its initial state. This demonstrates a novel
mechanical response in which the indenter does work
mainly on the liquid, with only a negligible fraction
transmitted to the elastic film. This response also underlies
the stability of the poked film to two common failure modes
of floating objects: the film would sink if the displacement
at the edge exceeds lc [27], but ζðRfilmÞ ∝ δAiðR2=3Þ ≪ lc
(since R ≫ 1). Similarly, pulling-induced delamination
will occur if the adhesive energy, ΔγR2

film, is smaller than
the alternative deformation energy [28]. Here, the alter-
native deformation energy, Udom, is barely affected by the
elastic modulii of the sheet, so delamination is expected
only for δ >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δγ=γlv

p
R2=3
filml

1=3
c , which is beyond the reach

of existing experiments [15] and the validity of our small
slope theory.
The concept of asymptotic isometry should be relevant to

other systems, where a thin elastic object is forced into a
curved, nondevelopable shape, in the presence of weak
tensile loads. Representative examples include the wetting
of a film by a liquid meniscus [29,30] or its adhesion to a
sphere [31,32], and the twisting of a stretched ribbon
[33,34]. Such systems may also have parameter regimes in
which the object is highly deformed yet nearly isometric to
its undeformed state; consequently, the work done by
external forces is not stored in the object itself. Finally,
it is important to realize that asymptotically isometric states
may not necessarily be wrinkled: the wrinkle-fold transition
[15,35] and other secondary instabilities may also exhibit a
similar phenomenology. We hope that our work will
provide a suitable framework for studying these
phenomena.
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