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We present a formula for the body-assisted van der Waals interaction potential between two atoms, one
or both being prepared in an excited energy eigenstate. The presence of an arbitrary arrangement for a
material environment is taken into account via the Green function. The resulting formula supports one of
two conflicting findings recorded. The consistency of our formula is investigated by applying it for the case
of two atoms in free space and comparing the resulting expression with the one found from the limiting
Casimir-Polder potential between an excited atom and a small dielectric sphere.
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Dispersion interactions are understood as a result of the
quantum description of the electromagnetic field. As the
atoms under consideration are assumed to be ground-state
atoms, transitions to excited energy eigenstates are
involved in the interaction together with the emission of
virtual photons from a continuous range of frequencies. In
the case of excited atoms, transitions to lower-lying states
can occur while releasing the energy difference in the form
of real photons of certain discrete frequencies (see, e.g.,
Ref. [1] for atom-body interaction). In the two-atom case,
the long-range potential was first found to have an
oscillatory distance dependence with an amplitude falling
off as r−2 [2,3]. Later on, the long-range potential was
confirmed to fall off as r−2, but without oscillations [4,5].
The difference between the two findings arises from the
way the photon integrals have been treated. The two
contradictory results are valid from a mathematical point
of view and a possible oscillatory behavior of the retarded
van der Waals (VDW) potential remains as an open
question. A time-dependent calculation supports the oscil-
latory result [6]. On the experimental side, the vacuum-
induced level shift (Casimir-Polder potential) of an excited
barium ion in the presence of a mirror is observed to show
an oscillatory distance dependence [7,8].
In this Letter, we first derive the body-assisted VDW

interaction potential between two excited atoms, using
fourth-order perturbation theory. As the background media
is replaced by free space in our formula, the resulting
expression for the long-range interatomic separation shows
an oscillatory distance dependence, in agreement with
Refs. [2,3], while it does not agree with the formula given
in Refs. [4,5]. In order to facilitate a judgement about the
two contradictory results, we will take a proper limit from
the known atom-body Casimir-Polder (CP) potential for an
excited atom and reduce it to the atom-atom VDW
interaction, to see whether the outcome supports any of
the above mentioned results.
Let us, first, derive the formula of the body-assisted VDW

interaction between two excited atoms. A very detailed

derivation of the formula for the case of ground-state atoms
is given in Ref. [9]. In the case of excited atoms, the starting
point is the same as for the ground-state atoms; hence, we
refer the reader to the calculation in Ref. [9]. We only point
out the differences which arise from the fact that one or both
atoms might be in excited states here.
Consider two atoms A and B in the presence of an

arbitrary arrangement of magnetoelectric bodies, located at
positions rA and rB, each being excited to an energy
eigenstate, say jkiA and jliB, respectively. The VDW
interaction potential resulting form the fourth-order per-
turbation, following a calculation similar to the one for the
ground-state atoms in Ref. [9], leads to
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[compare with Eq. (45) in Ref. [9]] with dkmA ¼ hkjd̂Ajmi
and ωkm

A denoting, respectively, the electric dipole
moments and frequencies of the atomic transitions. All
geometric and magnetoelectric properties of the environ-
mental media are contained in the Green tensor G via the
frequency-dependent relative electric permittivity εðr;ωÞ
and relative magnetic permeability μðr;ωÞ. The Green
tensor is the unique solution to the inhomogeneous
Helmholtz differential equation

∇×
1
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c2
Gðr;r0;ωÞ¼ Iδðr−r0Þ;

ð2Þ

with the boundary condition
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Gðr; r0;ωÞ ¼ 0 for jr − r0j → ∞: ð3Þ
Further, it obeys the Schwartz reflection principle,

Gðr; r0;ωÞ ¼ G�ðr; r0;−ω�Þ; ð4Þ
and the Onsager reciprocal relation,

Gðr; r0;ωÞ ¼ G⊤ðr0; r;ωÞ: ð5Þ
The integrands in Eq. (1), recalling the general properties

the Green tensor G as a response function, are analytic for
m > k andn > l, in the upper half of the complex-frequency
plane including the real axis. The letter P just before the
curly brackets stands for the principal value and makes
particular sense form < k and/or n < l. Equation (1) can be
simplified by using contour-integral techniques. For the first
integral, we may use Cauchy’s theorem and replace the
integral by a contour integral along infinitesimal half-circles
around the possible poles at ω ¼ −ωmk

A ¼ ωkm
A and

ω ¼ −ωnl
B ¼ ωln

B , an infinitely large quarter-circle in the
first quadrant and along the positive imaginary axis, intro-
ducing a purely imaginary frequency, ω ¼ iu. The integral
along the infinitely large quarter-circle vanishes due to the
limiting behavior of the Green tensor [10]

lim
jωj→∞

ω2

c2
Gðr; r0;ωÞ ¼ −Iδðr − r0Þ: ð6Þ

The result becomes
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[ΘðxÞ, unit step function], where GðrA; rB;ωÞ is used as an
abbreviation for ½dkmA ·GðrA; rB;ωÞ · dlnB �2. In a similar
manner, for the second integral in Eq. (1), we find
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where Eq. (4) is used. Now, by combining Eqs. (1), (7), and
(8), and making use of Eq. (5), the two-atom interaction

potential, after being split into the off-resonant and resonant
parts, can be written as follows:

UðrA; rBÞ ¼ UorðrA; rBÞ þ UrðrA; rBÞ; ð9Þ
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In Eqs. (10) and (11), αk
AðωÞ is the electric polarizability

tensor of atom A in the kth energy eigenstate, defined as

αkAðωÞ ¼
2

ℏ
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ϵ→0þ

X
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≡ αkAðωÞI: ð12Þ

Needless to say, in the case where atom B is in its ground
state (l ¼ 0), the second term on the right-hand side of
Eq. (11) vanishes.
In the simplest case of two isotropic atoms in an

infinitely extended free space, the required Green tensor
(G → Gð0Þ) is given as [11]

Gð0ÞðrA; rB;ωÞ ¼
−c2eiωl=c

4πω2l3
½pð−ilω=cÞI − qð−ilω=cÞee�;

ð13Þ
with l ¼ jrB − rAj, e ¼ ðrB − rAÞ=l, and

pðxÞ ¼ 1þ xþ x2; ð14Þ

qðxÞ ¼ 3þ 3xþ x2: ð15Þ
Choosing the Cartesian coordinates system such that

its origin corresponds to the location of atom A while
rB ¼ ðr; 0; 0Þ, the only nonzero matrix elements of the
Green tensor are as follows:

Gð0Þ
xx ðrA; rB;ωÞ ¼

c2

2πω2r3
ð1 − irω=cÞeiωr=c; ð16Þ

Gð0Þ
yy ðrA; rB;ωÞ ¼ Gð0Þ

zz ðrA; rB;ωÞ

¼ −c2

4πω2r3
ð1 − irω=c − r2ω2=c2Þeiωr=c:

ð17Þ
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Substitution of these into Eqs. (10) and (11) leads to

UorðrÞ ¼ −ℏ
16π3ε20r

6

Z
∞

0

duαkAðiuÞα0BðiuÞfðru=cÞ; ð18Þ

UrðrÞ ¼ −1
24π2ε20r

6

X
m<k

jdkmA j2α0Bðωkm
A Þ

× ½ð3 − 5η2m þ η4mÞ cosð2ηmÞ þ ð6ηm − 2η3mÞ sinð2ηmÞ�;
ð19Þ

where ηm ¼ rωkm
A =c, atom B is assumed to be in its ground

state, and

fðxÞ ¼ e−2xð3þ 6xþ 5x2 þ 2x3 þ x4Þ: ð20Þ

Equation (18) is exactly the well known result for the off-
resonant part of the VDW interaction potential in free space
(see, e.g., Ref. [4]). The resonant part, Eq. (19), is in
agreement with Ref. [3] in the retarded limit, while it does
not agree with the finding of Refs. [4,5]. The difference
arises from the ways the perturbative calculation was
accomplished; the frequency integrals in Refs. [4,5] were
performed such that the poles on the real axis were treated
by addition or subtraction of small pure-imaginary frequen-
cies, whereas in Ref. [3], the integrals were treated as
principal value integrals. If one imitates the calculations in
Ref. [4] in order to generalize its result to the inclusion of
material background, for the resonant part of the VDW
interaction potential between an excited atom A and a
ground-state atom B, one ends up with

UrðrA;rBÞ¼−
μ20
3

X
m<k

ðωkm
A Þ4

× jdkmA j2α0Bðωkm
A Þ

X
i;j

jGijðrB;rA;ωkm
A Þj2 ð21Þ

[for an equivalent formula for two-level atoms see Eq. (68)
in Ref. [12] or Eq. (3) in Ref. [13]]. Now, the interaction
potential in free space, according to this formula, can be
obtained using the matrix elements (16) and (17). The
result, as expected, meets the one given in Refs. [4,5],

UrðrÞ ¼ −μ20
24π2r2

X
m<k

ðωkm
A Þ4

× jdkmA j2α0Bðωkm
A Þð1þ η−2m þ 3η−4m Þ: ð22Þ

A possible way to judge the two contradictory results,
Eq. (19) and Eq. (22), may be attacking the problem via a
sufficiently different approach. To this end, we start with the
known CP interaction formula of an excited atom with a
macroscopic body.The atom-atom interaction canbe foundby
taking a proper limit of a small dielectric body (a homo-
geneous sphere here) and replacing it with a second atom.

According to the findings of Refs. [1,14], the CP
Potential of an isotropic atom A prepared in an energy
eigenstate jki and located at a position rA is given as

UðrAÞ ¼ UorðrAÞ þUrðrAÞ; ð23Þ
where Uor and Ur are, respectively, the off-resonant and
resonant parts of the potential

UorðrAÞ ¼
ℏμ0
2π

Z
∞

0

duu2αkAðiuÞtrGð1ÞðrA; rA; iuÞ; ð24Þ

UrðrAÞ ¼ −
μ0
3

X
m<k

ðωkm
A jdkmA jÞ2tr½ReGð1ÞðrA; rA;ωkm

A Þ�;

ð25Þ
with Gð1Þ being the scattering part of the Green tensor.
Let us consider the atom at a distance r from the center of

a homogeneous dielectric sphere of radius a (r > a). The
equiposition Green tensor required in Eqs. (24) and (25)
can be extracted from Ref. [15] given for a more general
case of a spherical magnetoelectric multilayer. However,
we adopt a simplified version from Ref. [16]. Choosing the
spherical coordinates system such that its origin coincides
with the center of the sphere, the scattering part of the
equiposition Green tensor reads

Gð1Þðr; r;ωÞ ¼
X

i¼r;θ;ϕ

Gð1Þ
ii ðr; r;ωÞeiei; ð26Þ

with er, eθ, and eϕ being the unit vectors pointing the
directions of radial distance r, polar angle θ, and azimuthal
angle ϕ, respectively. The matrix elements of the Green
tensor (26) are as follows:

Gð1Þ
rr ¼ ic

4πωr2
X∞
n¼1

nðnþ 1Þð2nþ 1ÞBN
n ðωÞ½hð1Þn ðrω=cÞ�2;

ð27Þ

Gð1Þ
θθ ¼ Gð1Þ

ϕϕ ¼ iω
8πc

X∞
n¼1

ð2nþ 1Þ
�
BM
n ðωÞ½hð1Þn ðrω=cÞ�2

þ c2BN
n ðωÞ

ω2r2
½zhð1Þn ðzÞ�02z¼rω=c

�
; ð28Þ

where hð1Þn ðzÞ denotes the spherical Hankel function of the
first kind, prime indicates differentiation with respect to the
argument, and

BM
n ðωÞ ¼ −

½z0jnðz0Þ�0jnðz1Þ − ½z1jnðz1Þ�0jnðz0Þ
½z0hð1Þn ðz0Þ�0jnðz1Þ − ½z1jnðz1Þ�0hð1Þn ðz0Þ

; ð29Þ

BN
n ðωÞ ¼ −

εðωÞ½z0jnðz0Þ�0jnðz1Þ − ½z1jnðz1Þ�0jnðz0Þ
εðωÞ½z0hð1Þn ðz0Þ�0jnðz1Þ − ½z1jnðz1Þ�0hð1Þn ðz0Þ

;

ð30Þ
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with jnðzÞ being the spherical Bessel function of the first
kind, z0 ¼ aω=c, z1 ¼

ffiffiffiffiffiffiffiffiffiffi
εðωÞp

z0. Substitution ofGð1Þ from
Eq. (26) together with (27) and (28) into Eqs. (24) and (25)
leads to
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ℏμ0c
8π2r2

X∞
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ð2nþ 1Þ
Z

∞
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duuαkAðiuÞ
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�
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−
r2Au

2

c2
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�
z¼iru=c

; ð31Þ
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12πr2
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× Im

�
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þr2ðωkm
A Þ2

c2
BM
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A Þ½hð1Þn ðzÞ�2
�

z¼rωkm
A =c

: ð32Þ

Equations (31) and (32) are valid as long as the atom is far
enough from the surface of the sphere such that the
description of the molecular structure of the sphere in a
macroscopic manner is valid. However, we are interested in
the limiting case of a small sphere, a ≪ r. Following a
discussion similar to the one given in Ref. [17], it can be
shown that, in the summands in Eqs. (31) and (32), it is
enough to retain only the n ¼ 1 terms for which, Eqs. (29)
and (30) reduce to

BM
1 ðωÞ≃ 0; ð33Þ

BN
1 ðωÞ ¼

2i
3

εðωÞ − 1

εðωÞ þ 2

�
aω
c

�
3

: ð34Þ

Substitution of these results for BM
1 and BN

1 and the explicit

forms of the spherical Hankel function hð1Þ1 ðzÞ into
Eqs. (31) and (32) leads, after some simplifications, to

UorðrAÞ ¼
−ℏa3

4π2ε0r6

Z
∞

0

duαkAðiuÞ
εðiuÞ − 1

εðiuÞ þ 2
fðru=cÞ;

ð35Þ

UrðrAÞ ¼
−a3

6πε0r6
X
m<k

jdkmA j2 εðω
km
A Þ − 1

εðωkm
A Þ þ 2

× ½ð3 − 5η2m þ η4mÞ cosð2ηmÞ
þ ð6ηm − 2η3mÞ sinð2ηmÞ�: ð36Þ

Now, let us consider a sphere to which the Clausius-
Mossotti relation applies, so that

εðωÞ − 1

εðωÞ þ 2
¼ αsðωÞ

4πa3ε0
; ð37Þ

with αs being the electric polarizability of the sphere.
Making use of Eq. (37) in Eq. (35) leads back to formula
(18), being the off-resonant part of the VDW interaction
potential between an excited atom A and a ground-state
atom in free space, where the electric polarizability of the
sphere is just replaced by the ground-state polarizability of
atom B.
Recovering the off-resonant part of the two-atom inter-

action potential via the limiting procedure mentioned
above, also makes obtaining the resonant part via the same
approach adequately reliable. This can be done by making
use of Eq. (37) in Eq. (36). The result coincides with
Eq. (19), which was based on a perturbative calculation, as
the electric polarizability of the sphere is replaced by that of
a ground-state atom B. Hence, it is evident that the photon
integrals must be treated as principal-value integrals as in
Refs. [2,3] and our formula, Eq. (11), is the correct one
for the resonant VDW interaction potential between
excited atoms.
In summary, in this Letter, we presented a new formula

for the medium-assisted VDW interaction potential
between two excited atoms. It can be a generalization of
the findings of Refs. [2,3] to the presence of the arbitrary
material environment. The consistency of the formula was
confirmed by comparing its result for the case of two atoms
in free space with the result obtained via a limiting
approach from atom-body CP potential. The free-space
result is of oscillatory distance-dependence behavior, in
agreement with Refs. [2,3] for retarded atom-atom
separations.
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