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The nuclear neutron-proton contact is introduced, generalizing Tan’s work, and evaluated from medium
energy nuclear photodisintegration experiments. To this end we reformulate the quasideuteron model of
nuclear photodisintegration and establish the bridge between the Levinger constant and the contact. Using
experimental evaluations of Levinger’s constant, we extract the value of the neutron-proton contact in finite
nuclei and in symmetric nuclear matter. Assuming isospin symmetry we propose to evaluate the neutron-
neutron contact through the measurement of photonuclear spin correlated neutron-proton pairs.
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Introduction.—Considering a system of two-component
fermions interacting via a short range interaction, Tan [1,2]
has established a series of relations between the amplitude
of the high-momentum tail of the momentum distribution
nσðkÞ, where σ is the spin, and the properties of the system,
such as the energy, pair correlations, and pressure.
These relations, commonly known as the “Tan relations,”
are expressed through a new variable, the “contact”
C ¼ limk→∞k4nσðkÞ. The contact, being a state variable,
depends on the density of the system (usually expressed
through the Fermi momentum kF), its temperature, its
composition, and its thermodynamic state. The Tan rela-
tions are universal: they hold for few-body as well as for
many-body systems, for the ground state and for finite
temperature, for the normal state but also for the superfluid
state. Their validity range depends on the interparticle
distance d ∝ 1=kF and the magnitude of the scattering
length both being much larger than the potential range,
usually characterized by the effective range reff .
The theoretical discovery of the Tan relations has led to a

concentrated experimental effort to measure and verify
them in ultracold atomic systems, where the scattering
length as well as the density can be controlled. These efforts
have led to an experimental verification of Tan’s relations in
fermionic 40K [3,4] and 6Li [5–7] systems. It was also
found that the measured value of the contact, as a function
of ðkFaÞ−1 along the Bardeen-Cooper-Schrieffer–Bose-
Einstein condensation (BCS-BEC) crossover, is in accor-
dance with the theoretical predictions of Ref. [6].
In this Letter we focus on nuclear systems. Generalizing

Tan’s work, we introduce the nuclear contacts and present
an experimental evaluation of the neutron-proton contact in
finite nuclei and also in symmetric nuclear matter. To this
end we relate the contact to a medium energy photonuclear
cross section and utilize available experimental data. In
ultracold atomic physics, the ratio between the interparticle
distance 1=kF, the scattering length a, and reff can be
controlled in such a way as to ensure that the a ≫ reff and
kFreff ≪ 1. The nuclear two-body scattering length is about

5.38 fm when the two nucleons are in the 3S1 state and
about −20 fm when they are in the 1S0 state. These
scattering lengths are denoted by at for the 3S1 channel,
and as for the 1S0 channel. The average interparticle
distance in the atomic nucleus is about 2.4 fm. This
number can be deduced from the empirical nuclear
charged radius formula Rc ≈ 1.2A1=3 fm. The long range
part of the nuclear potential is governed by the pion
exchange Yukawa force with a characteristic length of
μ−1 ¼ ℏ=mπc ≈ 1.4 fm. Therefore, in contrast with atomic
physics, in nuclear physics the demand kFreff ≪ 1 can at
best be replaced by μd > 1 which holds for an inter-
particle distance of about 2 fm.
For photons in the energy range ℏω ¼ 100–200 MeV,

corresponding to the wave number k ≈ 0.5–1 fm−1, the
deuteron photoabsorption cross section is dominated by the
leading electric dipole E1 and magnetic dipole M1 tran-
sitions [8]. The nuclear photo effect at these energies is
dominated by the quasideuteron process first proposed by
Levinger more than 60 years ago [9]. In the quasideuteron
picture, the photonuclear reaction mechanism goes through
an absorption of the photon by a correlated proton-neutron
(pn) pair being close to each other, followed by an emission
of the pn pair back to back, flying without further
interaction with the remaining nucleons. The resulting
photonuclear cross section of a nucleus composed of Z
protons and N neutrons, A ¼ N þ Z, is therefore propor-
tional to the deuteron cross section σd,

σA ¼ L
NZ
A

σd; ð1Þ

with L ≈ 6 being the Levinger constant. In the decades
following Levinger’s original work, there were few com-
pilations of the photonuclear data and systematic evalua-
tions of the Levinger constant (see, e.g., Ref. [10] and the
references therein). It was also found that the two-body
short range correlations captured so well by the quasideu-
teron model play an important role in analyzing hard
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nuclear electron scattering experiments, see, e.g.,
Refs. [11–13]. Moreover, Levinger’s picture received
remarkable experimental support when high momentum,
correlated pn pairs flying back to back were measured in
proton and electron scattering on carbon [14,15] and other
nuclei [16,17].
Already, from the pictorial description of the quasideu-

teron model, one can sense the underlying connection
between Tan’s contact and Levinger’s constant. In the
following we shall define the various nuclear contacts
associated with the permissible two-nucleon s-wave states.
Utilizing these contacts we shall rederive the quasideuteron
model, establishing the desired connection. As will be
evident later, the nuclear contacts can be evaluated from
either spin independent transitions or from experiments on
spherical nuclei. Consequently we shall concentrate on the
E1 transition cross section, which in principle can be
extracted from the angular distribution of the emitted pn
pair. The experimental evaluation of Levinger’s constant
[10] is then used to extract the proton-neutron contact.
The Contact in Nuclear Systems.—When two particles

interacting via short range force approach each other, the
many-body wave function can be factorized into a product
of an asymptotic pair wave function φijðrijÞ, where
rij ¼ ri − rj, and a function Aij, also called the regular
part of Ψ, describes the residual A − 2 particle system and
the pair’s center of mass (c.m.) Rij ¼ ðri þ rjÞ=2 motion
[1,18],

Ψ!
rij→0

φijðrijÞAijðRij; frkgk≠i;jÞ: ð2Þ

Because of the suppression of higher partial waves, the pair
wave function will predominantly be an s wave. In
particular, in the zero-range model [19], where the action
of an interacting particle pair with scattering length a on
the many-body wave function Ψ is represented through the
boundary condition ½∂ logðrijΨÞ=∂rij�rij¼0

¼ −1=a, the
low energy asymptotic pair wave function takes a particu-
larly simple form: φij ¼ ð1=rij − 1=aÞ.
The contact C represents the probability of finding a

correlated pair within the system and can be expressed as
[1,18]

C ¼ 16π2
X
i<j

hAijjAiji; ð3Þ

where

hAijjAiji ¼
Z Y

k≠i;j
drkdRij

× A†
ijðRij; frkgk≠i;jÞAijðRij; frkgk≠i;jÞ ð4Þ

is independent of the particular form of the asymptotic pair
wave function φij. The Pauli principle implies that Aij ¼ 0
if the two particles are in the same internal state.

Generalizing this formalism to nuclear systems, the pair
can be in more than one configuration, and we have to
consider six possible pairs: P ¼ fp↑p↓; n↑n↓; p↑n↓;
p↑n↑; p↓n↑; p↓n↓g. In this representation we can define
a contact CP for each pair P. These contacts are propor-
tional to the diagonal elements of the overlap matrix
hAP

ijjAP0
ij i. In nuclear physics it is more natural, however,

to employ a spin-isospin basis that diagonalizes the overlap
matrix. Furthermore, assuming spin symmetry now for the
residual function norm hAP

ijjAP
iji, we have to consider only

four contacts associated with the pairs P ¼ fðppÞS¼0;
ðnnÞS¼0; ðnpÞS¼0; ðnpÞS¼1g. Taking into account that the
coulomb force as well as other isospin symmetry-breaking
terms are negligible at short distances, the number of
independent nuclear contacts in symmetric nuclei
(N ¼ Z) can be further reduced to only two, corresponding
to the two-body spin-isospin configurations fjS¼0;T¼1i;
jS¼1;T¼0ig. In the quasideuteron mechanism described
above, only correlated pn pairs play any role; thus, we need
to consider only the two nuclear contacts fCs; Ctg corre-
sponding to the spin singlet and spin triplet states.
In bosonic systems the high-momentum tail of the

momentum distribution contains a 1=k5 correction due to
three-body contact [20]. We note that such a correction is to
be expected in nuclear systems, as three nucleon coales-
cence is not forbidden by the Pauli exclusion principle.
Studying three-body effects on the nuclear photoabsorption
cross section and consequently estimating the nuclear
three-body contact is an important task. Nevertheless in
the current Letter we focus on the leading two-body effect.
The quasideuteron model in the zero-range

approximation.—In the following we will utilize the
zero-range approximation to relate the contact to the
quasideutron model. This model allows a clear and simple
derivation. We note, however, that it can be easily gener-
alized to include more realistic wave functions.
In the leading E1 approximation, the total photoabsorp-

tion cross section of a nucleus is given by

σAðωÞ ¼ 4π2αℏωRðωÞ; ð5Þ
where α is the fine structure constant,

RðωÞ ¼
X̄
i

X
f

jhΨfjϵ · D̂jΨ0ij2δðEf − E0 − ℏωÞ ð6Þ

is the response function, D̂ is the unretarded dipole operator
D̂ ¼ P

A
i¼1ð1þ τ3i =2Þri, and ϵ is the photon’s polarization

vector. The wave functions of the initial (ground) state and
of the final state are denoted by jΨ0=fi and the energies by
E0=f, respectively. The operator τ3i is the third component
of the ith nucleon isospin operator. The response functions
includes a sum over the final states

P
f that becomes an

integration in the limit of infinite volume, and an average
over the initial states which amounts to an average over the
magnetic projection of the ground state,

P̄
i ¼ 1=

ð2J0 þ 1ÞPM0
.
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For an inverse photon wave number somewhat shorter
than the average interparticle distance (kd > 1), the reac-
tion cross section goes via a nucleon pair that absorbs the
photon. The E1 nature of the process implies that the pair
must be a neutron-proton pair since a proton-proton pair
possesses no dipole moment. Utilizing the zero-range
approximation,

Ψ0!
rpn→0

X
P

�
1

rpn
−

1

aP

�
AP
pnðRpn;frjgj≠p;nÞþOðrpnÞ; ð7Þ

where AP
pn ¼

P
JA−2 ½χP ⊗ AJA−2

P ðRpn; frjgj≠p;nÞ�J0M0 . Here
the notation pn stands for any proton-neutron pair, whose
spinors are coupled into a spin state χP with total spin
S ¼ 0; 1, and the corresponding scattering length aP. The
sum over the angular momentum of the remaining A − 2
nucleons JA−2 extends over all possible configurations that
coupled to S yield the ground state’s total angular momen-
tum quantum numbers J0, M0.
Turning now to the final state, we consider a reaction

mechanism where the photon is absorbed by a proton p that
is emitted with large momentum kp. For high photon
energies this process is fast enough and interaction between
the emitted proton and the rest of the nucleus can be
neglected, that is the Born approximation. Hence, momen-
tum conservation implies that another particle must be
emitted. As pointed out by Levinger [9], this particle must
be a neutron n emitted with momentum kn, such as
kn ≈ −kp ≡ k. The relative momentum of the emitted
particles is ðkn − kpÞ=2 ¼ 2kn=2 ¼ k, and they can form
either an S ¼ 0 or an S ¼ 1 spin state. Assuming that the
residual A − 2 particle wave function is frozen throughout
this process, the final state wave function for an outgoing
spin S pair is given by

ΨP
f ¼ N PÂ

�
1ffiffiffiffi
Ω

p e−ik·rpnAP
pn(Rpn; frjgj≠p;n)

�
; ð8Þ

where N P is a normalization factor, the wave function is
normalized in a box of volume Ω, and Â¼ (1−P

p0≠pðp; p0Þ)(1 −P
n0≠nðn; n0Þ) is the proton-neutron

antisymmetrization operator, with ði; jÞ the transposition
operator. The sums over p0, n0 extend over all protons and
neutrons in the system but p, n. As AP

pnðRpn; frjgj≠p;nÞ is
antisymmetric under permutation of all identical particles
except the pair pn, ΨP

f is antisymmetric under proton
permutations and under neutron permutations.
Utilizing now permutational symmetry, the nuclear

neutron-proton contacts CP ¼ fCs; Ctg are given by

CP ¼ 16π2NZhAP
pnjAP

pni: ð9Þ
Therefore, the normalization factor is given by N P ¼
ð1= ffiffiffiffiffiffiffi

NZ
p Þð1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hAP

pnjAP
pni

q
Þ ¼ 4π=

ffiffiffiffiffiffi
CP

p
. Considering now

the transition matrix element, we see that

hΨP
f jϵ · D̂jΨ0i ¼ NZN P

Z Y
k

drk
1ffiffiffiffi
Ω

p eik·rpn

× AP†
pnðRpn; frjgj≠pnÞðϵ · D̂ÞΨ0; ð10Þ

where we have used the fact that ÂΨ0 ¼ NZΨ0. Because
of the orthogonality of the initial and final states, the
transition matrix element vanishes unless the photon acts
on the outgoing pn pair. Since the momentum k is large,
the only significant contribution to the integral comes
from the asymptotic rpn → 0, where Ψ0 diverges, and
therefore the integration over rpn hereafter can be limited to
a small neighborhood of the origin Ω0. See the
Supplemental Material [21] for more details. Hence,

hΨP
f jϵ ·D̂jΨ0i¼NZN P

X
P0

hAP
pnjAP0

pni

×
Z
Ω0

drpn
1ffiffiffiffi
Ω

p eik·rpnðϵ · D̂pnÞ
�

1

rpn
−

1

aP0

�
;

ð11Þ

where D̂pn ¼ rp ≃ rpn=2, neglecting the pair’s c.m.
motion. Most of the photon energy is delivered to the
relative motion, whereas the photon’s momentum is trans-
lated into the c.m. motion; thus, the energy fraction
associated with the c.m. coordinate Rpn is ℏω=4Mc2,
which amounts to only a few percent for the photon
energies under consideration. We can therefore safely
neglect the pair’s recoil. We note that the matrix element
(11) is independent of M0, thus

P̄
i ¼ 1 in Eq. (6). For the

E1 operator or for any spin scalar operator, the orthogon-
ality of the different two-body spin functions included in
AP ensures that the spin state of the pn pair is unaltered
throughout the process, i.e., P0 ¼ P. For spherical J0 ¼ 0
nuclei, this important result holds for any one-body nuclear
current operator since the different singlet and triplet spin
states must be coupled to spectator functions AJA−2

P , with
JA−2 ¼ 0; 1, respectively. These spectator functions are
orthogonal and therefore there is no interference between
the different pn spin states. Utilizing these results we can
rewrite the transition matrix element in the form

hΨP
f jϵ ·D̂jΨ0i¼

ffiffiffiffiffiffi
CP

p
4π

Z
Ω0

drpn
1ffiffiffiffi
Ω

p eik·rpnϵ · D̂pn

�
1

rpn
−

1

aP

�
:

ð12Þ

The matrix element (12) looks very much like the deuter-
on’s photoabsorption transition matrix element. To make
this comparison complete, let us consider the deuteron’s
photoabsorption reaction. The deuteron is a bound proton-
neutron pair with angular momentum J ¼ 1. In the zero-
range approximation, the deuteron wave function is
assumed to be a pure s wave, spin triplet state, that takes
the form
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ψd;0 ¼
1ffiffiffiffiffiffiffiffiffi
2πat

p e−rpn=at

rpn
!
rpn→0

1ffiffiffiffiffiffiffiffiffi
2πat

p
�

1

rpn
−

1

at

�
: ð13Þ

In the Born approximation, and neglecting the c.m. recoil,
the deuteron’s final state wave function is given by

ψd;f ¼
1ffiffiffiffi
Ω

p e−ik·rpn : ð14Þ

Hence,

hψd;fjϵ · D̂jψd;0i¼
Z

drpn
1ffiffiffiffi
Ω

p eik·rpnϵ · D̂pn
1ffiffiffiffiffiffiffiffiffi
2πat

p e−rpn=at

rpn
:

ð15Þ

Analyzing Eqs. (12) and (15), we note that in the high-
momentum limit k⟶∞ the main contribution to the
transition matrix element emerges from Ω0, the neighbor-
hood of the origin rpn ¼ 0. There, the np pair wave
function takes the asymptotic form ð1=rpn − 1=atÞ ≈ 1=
rpn. Utilizing this approximation and comparing it to
Eqs. (12) and (15), we can conclude that

hΨP
f jϵ · D̂jΨ0i ≈

ffiffiffiffiffiffiffiffiffiffi
CPat
8π

r
hψd;fjϵ · D̂jψd;0i: ð16Þ

Substituting this result into Eq. (5) and summing over the
possible final state spin configurations, we get

σAðωÞ ¼
at
8π

ðCs þ CtÞσdðωÞ; ð17Þ

where σdðωÞ is the deuteron photonuclear cross section.
Comparing this result with the celebrated Levinger for-
mula, Eq. (1), we see that the Levinger constant L can be
directly expressed through the nuclear contacts CP,

L ¼ at
8π

A
NZ

ðCs þ CtÞ: ð18Þ

The Levinger constant was explored and evaluated in
various photonuclear experiments. Using this data the
averaged nuclear pn contact C̄pn ≡ ðCs þ CtÞ=2 can be
evaluated.
Before we proceed to an actual evaluation of the nuclear

contact a few comment are in order. (i) In our derivation we
have utilized the zero-range approximation. The validity of
this approximation is at best questionable for finite nuclei.
Nonetheless, the derivation can be generalized to any short
range pair wave function, given that it is unique across the
nuclear chart. In this case, the resulting many-body contact
should be expressed in terms of the deuteron contact; i.e.,
8π=at is to be replaced by the deutron contact in Eqs. (17)
and (18). (ii) Although we have only considered the dipole
response, our main result (17) holds in spherical J0 ¼ 0
nuclei for any multipole and any one-body current operator.

For J0 ≠ 0 nuclei, Eq. (17) holds for any spin independent
one-body operator. (iii) If instead of measuring the total
photoabsorption cross section one measures the cross
section σ↑↑A for the parallel spin reaction γ þ AX⟶
A−2Y þ p↑n↑, we would obtain

σ↑↑A ðωÞ ¼ 1

3

at
8π

CtσdðωÞ ð19Þ

for spherical J0 ¼ 0 nuclei. Thus, measuring the spin
correlated photonuclear cross section would enable the
separation of the two nuclear contacts Cs and Ct.
Experimental evaluation of the nuclear neutron-proton

contact.—At this point we would like to extract the nuclear
neutron-proton contact from the experimental photonuclear
data. To this end we use an analysis of the Levinger
constant made by Terranova et al. [10], who evaluated the
Levinger constant L for 14 nuclei along the periodic table,
from lithium to uranium, using various photonuclear
experiments [23–26]. In order to include low energy data,
Terranova et al. have used in their analysis the modified
quasideuteron model [27], taking into account the Pauli
blocking. For high photon energies this is a small correc-
tion. The evaluated Levinger constant, presented in Fig. 1,
seems to be constant along the nuclear chart, with an
averaged value of L ≈ 5.50� 0.21ð1σÞ. Using this result
we can estimate the average pn contact for symmetric
nuclei and nuclear matter, namely,

C̄pn

kFA
¼ π

kFat
ð5.50� 0.21Þ ≈ 2.55� 0.10: ð20Þ

Here in the last equality we have used the relation 1=kFat ≈
0.15 valid on the average for large nuclei. We note that the
quoted error in Eq. (20) refers only to statistical errors, and
not to systematic errors associated with our model
assumptions.

10 1005020 20030 30015 15070
0

2

4

6

8

10

A

L

FIG. 1 (color online). Levinger constant values evaluated from
photonuclear experiments. Red circles are based on Ref. [23], blue
squares are based on Ref. [24], and green diamonds are based on
Ref. [25]. Adapted with changes from Ref. [10]. The blue line
shows the averaged value L ¼ 5.50, and the gray band its error.
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As mentioned above, the contact was measured for a
universal Fermi gas along the BCS-BEC crossover, i.e., as a
function of the dimensionless parameter kFa. In order to
compare the nuclear pn contact to the universal Fermi gas
results, we estimated kF for each nuclei using the rms
charge radius, evaluated by Brown et al. [28]. In Fig. 2 we
present the universal Fermi gas contact measured with 40K
atoms [3] and 6Li atoms [5,6], the theoretical prediction of
Ref. [6], and the average nuclear pn contact evaluated for
each nucleus individually. For the nuclear scattering length
we have used 1=a ¼ 1=2ð1=as þ 1=atÞ, with an error bar
that corresponds to the difference between the singlet and
triplet scattering lengths. Inspecting the figure, it is note-
worthy that although nuclei are far from being a universal
Fermi gas, the nuclear contact falls in line with that of a
universal Fermi gas.
Summary.—Summing up, rederiving the quasideuteron

model in the zero-range approximation, we have con-
structed a bridge between the contact C, recently intro-
duced by Tan to describe the properties of interacting Fermi
systems and nuclear systems. Doing so we have identified
two contacts Cs, Ct, corresponding to spin singlet and spin
triplet states, and we have shown that the average pn
contact C̄pn is proportional to Levinger’s constant L. Using
experimental estimates for L we have deduced the value of
C̄pn. We have found that the evaluated value of C̄pn stands
in good agreement with the universal contact measured in
ultracold atomic experiments. This result also hints towards
the usefulness of Tan’s relations in nuclear physics. To
separate between the singlet and triplet contacts, we
propose to measure the spin correlated emitted pairs in a
photonuclear experiment.
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contact evaluated here from photonuclear experiments. Orange
triangles: measurement with ultracold 40K atoms [3]; purple
diamonds: ultracold 6Li atoms [5,6]. Red, blue, and green dots:
nuclear contact based on photonuclear experiments of Refs. [23–25].
The square’s bounds represent the experimental error for the
different data sets. The line is the theoretical prediction of Ref. [6].
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