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We present general expressions for the magnetic transition rates in electron paramagnetic resonance
(EPR) experiments of anisotropic spin systems in the solid state. The expressions apply to general spin
centers and arbitrary excitation geometry (Voigt, Faraday, and intermediate). They work for linear and
circular polarized as well as unpolarized excitation, and for crystals and powders. The expressions are
based on the concept of the (complex) magnetic transition dipole moment vector. Using the new theory, we
determine the parities of ground and excited spin states of high-spin (S ¼ 5=2) FeIII in hemin from the
polarization dependence of experimental EPR line intensities.
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Electron paramagnetic resonance (EPR) is a spectro-
scopic technique that yields unique information on struc-
tural [1–7], magnetic [8–10], and electronic properties
[11–13] of paramagnetic states in material systems ranging
from proteins to nanomagnets and semiconductors. In
addition, EPR methods are increasingly used for controlled
manipulation of spin systems, which may form the basis of
spin quantum computing [14–17]. Experimental design,
interpretation, prediction, and control of the latter require
general theoretical tools to calculate EPR transition ener-
gies and probabilities. These properties are determined by
the spin center under study and the choice of the exper-
imental parameters.
In a standard EPR experiment, linearly polarized low-

frequency microwave (mw) radiation is coupled into a
resonator exposed to a static magnetic field B0 such that the
radiation magnetic field component B1ðtÞ of the ensuing
standing wave is perpendicular to B0. With a linear
detector, the measured EPR spectral intensity is propor-
tional to the power absorbed by the sample, which in turn is
proportional to the quantum mechanical transition rate. For
this standard geometry, compact expressions for the EPR
transition rate can be found in the literature [18,19].
Analytical expressions for a single spin without fine or
hyperfine interactions are known [20–25].
However, the limitation to a resonator, linear mw

polarization and orthogonal orientation between static
and oscillating magnetic fields restricts the versatility of
EPR experiments. Recently, experimental setups that go
beyond these limitations have become more prevalent.
Novel nonresonant beam EPR setups explore very broad
field (up to 30 T) and frequency (up to THz) ranges. These
high-field and high-frequency EPR experiments are based
on a range of excitation sources, ranging from lab-based

semiconductors, lasers, and tube sources [26–29] to syn-
chrotrons [30–33] and free electron lasers [34,35]. Despite
the variety of source technology, these approaches are all
based on quasioptical techniques that transmit mw or THz
radiation in open space instead of waveguides or coaxial
cables. This provides much larger freedom for the align-
ment of the radiation beam relative to the external
magnetic field.
Thereby, entirely new EPR experiments became pos-

sible. These include experiments in Faraday geometry [36],
and the employment of split ring resonator arrays as THz
metamaterials for selective EPR excitation [37,38]. Unlike
with resonators, in nonresonant setups circular or unpolar-
ized radiation can be employed. Circularly polarized
radiation can be used to determine the sign of g factors
[25,39–42] and is a possible selection tool in EPR-based
quantum computing [43]. Depending on the handedness of
the circularly polarized radiation, different sets of EPR
transitions can be addressed in single-molecule magnets
[36]. For dynamic nuclear polarization, it was recently
shown that the enhancement depends on the handedness of
the circularly polarized mw radiation [44]. Unpolarized
radiation, or radiation that is extracted from beam paths
which do not conserve the polarization of the radiation, are
used for high-field cw EPR [27,29,45–48], for frequency-
swept cw EPR [33,49,50], as well as for free-electron laser-
based cw EPR experiments [34].
Spectral intensities from these new experimental designs

cannot be described by current theory, which is limited to
perpendicular and parallel excitation geometries with linear
polarization. Here, we derive compact and general expres-
sions for EPR magnetic transition intensities that cover all
excitation geometries and polarizations. We show that the
transition intensities can be described in an elegant way
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using a general magnetic transition dipole moment
(MTDM) vector μ. The MTDM is the magnetic analog
of the electric transition dipole moment vector widely used
in optical spectroscopy.
First, we treat a solid-state sample containing isolated

identically oriented spin centers, each containing N
coupled spins (electrons and/or nuclei) with arbitrary
anisotropic interactions. We then extend the treatment to
dilute powder samples, where isolated spin centers occur in
a random uniform orientational distribution. Next, we treat
the special case of isolated electron spins without fine or
hyperfine interactions. All cases cover linear, circular, and
unpolarized radiation. The associated derivations are given
in the Supplemental Material [51]. Finally, we show data
from an experiment that directly determines the parities of
magnetic states involved in an EPR transition. This
illustrates the utility of the newly derived theory.
An EPR transition between two stationary states jai and

jbi of an isolated spin center is induced by the resonant
interaction between the total magnetic dipole moment of
the spins and the magnetic field component B1 of the mw
radiation. Since the mw radiation is always a weak
perturbation to the spin center, the cw EPR line intensity
for the transition jai → jbi is accurately described by time-
dependent perturbation theory (Fermi’s “golden rule” [52])
and is given by

Iab ¼ χ
B2
1

4
jnT1 hbjμ̂jaij2 ¼ χ

B2
1

4
jnT1μj2 ¼ χ

B2
1

4
D: ð1Þ

χ contains the population difference of the two states and,
for field-swept spectra, the additional factor ½dðEb − EaÞ=
dB0�−1, which is the general form of the Aasa-Vänngård
1=g factor [53,54]. B1 is the (maximal) amplitude of the
oscillatory B1, and n1 is a vector describing its direction. μ̂
is the total magnetic dipole moment operator. For an
isolated spin system with N coupled spins, it is given by
μ̂ ¼ P

N
q¼1 σqμqgqŜq. For electron spins, σq ¼ −1 and μq is

the Bohr magneton μB. For nuclear spins, σq ¼ þ1 and μq
is the nuclear magneton μN . gq is the 3 × 3 g matrix and Ŝq
is the spin angular momentum operator of the qth spin.
The complex MTDM vector μ is the matrix element of

the magnetic dipole moment operator for the transition,
μ ¼ hbjμ̂jai. μ depends on the type of transition. In the
simplest case, for a single-quantum transition in an iso-
tropic spin system, μ is complex and perpendicular to B0

and describes a rotation around the external magnetic field.
For a zero-quantum transition in an isotropic system, μ is
real and parallel to B0. μ is unique within an arbitrary
complex phase factor.
A few vectors are needed to describe the experimental

excitation geometry (Fig. 1). In EPR experiments, usually a
static magnetic field B0 is applied, hence its direction
n0 ¼ B0=jB0j, is needed. For resonator and beam EPR
experiments using linear polarization, n1 is required. The
two limiting cases are perpendicular (n1⊥n0) and parallel

(n1∥n0) mode. For beam experiments with unpolarized and
circularly polarized radiation, the propagation direction
nk ¼ k=jkj, with the wave vector k, is required. Two
limiting cases are the Voigt geometry with nk⊥n0, and
the Faraday geometry with nk∥n0 [Fig. 1(b) and 1(c)].
Together with μ, the excitation geometry and the

polarization determine the form of D in Eq. (1). For
aligned spin centers in a single orientation, it is

Ds
lin ¼ jnT1μj2; ð2aÞ

Ds
un ¼

1

2
ðjμj2 − jnTkμj2Þ; ð2bÞ

Ds
� ¼ 2Ds

un � 2nTk ðImμ × ReμÞ; ð2cÞ

for linear polarized (Ds
lin), unpolarized (D

s
un), and circularly

polarized light (Ds
�). D

s
lin contains the projection of μ onto

n1, whereas Ds
un contains the projection of μ onto the plane

perpendicular to nk. The � in Ds
� denotes right- and left-

handed circular polarization, respectively. Ds
� contains the

unpolarized expression and an additional cross product
term. If μ is complex, the cross product represents the
rotation axis for the rotation described by μ. If this rotation
axis is perpendicular to nk, then left- and right-hand
polarization give identical intensities. The cross product
is independent of the overall phase of μ.
For disordered systems such as powders and glasses, the

above expressions can be integrated. The resonance posi-
tions (frequencies and fields) of a spin center are generally
anisotropic and are determined by the center’s orientation
relative to n0. Centers with identical orientation relative to
n0, but different orientation relative to n1, have identical

FIG. 1 (color online). Sketches of magneto-optical excitation
geometries described in the text. Electric (E1) and magnetic (B1)
field components of the mw/THz radiation are depicted by red
and green oscillating lines, respectively. k (yellow arrow) denotes
the propagation direction of the radiation. The static magnetic
field B0 is indicated by the gray arrow. Magnet coils are shown
as gray tori. (a) EPR excitation of a sample (blue box) inside a
mw resonator (pale yellow box with black contours). The
standing wave in the resonator ensures maximum B1 and
minimum E1 at the sample position. In the present case, B1 is
aligned perpendicular to B0. (b) and (c) depict traveling wave
excitation in Voigt geometry (b), where k⊥B0, and Faraday
geometry (c), where k∥B0.
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resonance positions, but differ in their line intensities. The
integrals of the general expressions from Eq. (2) over this
subset of spin centers give

Dpow
lin ¼ 1

2
½ð1 − ξ21Þjμj2 þ ð3ξ21 − 1ÞjnT0μj2�; ð3aÞ

Dpow
un ¼ 1

4
½ð1þ ξ2kÞjμj2 − ð3ξ2k − 1ÞjnT0μj2�; ð3bÞ

Dpow
� ¼ 2Dpow

un � 2ξknT0 ðImμ × ReμÞ; ð3cÞ

with ξ1 ¼ nT1n0 and ξk ¼ nTkn0. These expressions simplify
for several common cases. For linear polarization,
perpendicular (n1⊥n0) and parallel (n1∥n0) modes give

Dpow
lin;⊥ ¼ 1

2
ðjμj2 − jnT0μj2Þ and Dpow

lin;∥ ¼ jnT0μj2:

Since both expressions cannot be zero simultaneously
unless μ is zero, we see that any transition with a finite
MTDM will give intensity in at least one of the two modes.
For unpolarized radiation, we can distinguish between

nk⊥n0 (Voigt geometry) (see also Refs. [18,55]), and nk∥n0
(Faraday geometry), where we obtain

Dpow
un;V ¼ 1

4
ðjμj2 þ jnT0μj2Þ; Dpow

un;F ¼ 1

2
ðjμj2 − jnT0μj2Þ:

Dpow
un;F is identical to Dpow

lin;⊥ and Ds
un;F. For Voigt geometry,

Dpow
þ ¼ Dpow

− as a result of the powder integration; there-
fore right- and left-handed circular polarization give the
same line intensities, independent of the particular tran-
sition or the internal structure of the spin center.
For the case of an isotropic spin system, Eqs. (2) and

Eqs. (3) are equivalent. In this case, μ is either
perpendicular or parallel to n0.
For isolated electron spins in the absence of any

interaction except the electron Zeeman interaction, the
MTDM for an allowed transition jmSi → jmS þ 1i can
be calculated analytically by using a frame ði; j; uÞ, where u
is the quantization axis, u ¼ gTn0=g with g ¼ jgTn0j.
The frame is obtained by the Bleaney-Bir transformation
[56,57]. In this frame, the MTDM is given, within
an arbitrary phase factor, by μ ¼ cgði − ijÞ, with
c ¼ −μB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðSþ 1Þ −mSðmS þ 1Þp

=2. For a single orien-
tation, we find [58]

~Ds
lin ¼ c2Λðn1Þ ¼ c2Γðn1Þ; ð4aÞ

~Ds
un ¼

1

2
c2½trðggTÞ − jguj2 − ΓðnkÞ�; ð4bÞ

~Ds
� ¼ 2 ~Ds

un � 2c2ξk detðgÞ=g; ð4cÞ
with ΓðvÞ¼ jdetðgÞg−1ðv×n0Þ=gj2 and ΛðvÞ¼ jðgTvÞ×
uj2. These expressions depend only on u, and not on i
or j. (The diacritic tilde is used to distinguish the

expressions for this special case from the general ones.)
~Ds
lin ¼ c2Λðn1Þ was first derived by Kneubühl [21]. ~Ds

lin
expands to other previously published expressions
[23,24,59] and simplifies for diagonal g [22,60].
Bleaney’s original expression [20] is a very special case
where n1 is limited to a symmetry plane of the eigenframe
of an axial g tensor. ~Ds

� was previously derived for Faraday
geometry [25].
For linear polarization, the dependence of the line

intensity on the relative orientation between n1 and n0 is
evident from Γðn1Þ: maximal for n1⊥n0 and zero for n1∥n0.
In the special case, the rotation axis of the rotation described
by μ is along n0 (without restrictions on g), hence in Voigt
geometry ~Ds

þ ¼ ~Ds
−. Both left- and right-handed circular

polarization give the same transition intensity. In the limiting
case of an isotropic g matrix (g ¼ giso1) in Faraday
geometry, we get ~Ds

�;F ¼ 2c2g2isoð1� 1Þ, and only one
handedness leads to nonzero intensity.
For powders of isolated spins, ~D is

~Dpow
lin ¼ 1

2
c2ð1 − ξ21Þ½trðggTÞ − jguj2�; ð5aÞ

~Dpow
un ¼ 1

4
c2ð1þ ξ2kÞ½trðggTÞ − jguj2�; ð5bÞ

~Dpow
� ¼ 2 ~Dpow

un � 2c2ξ2k detðgÞ=g: ð5cÞ
Special cases of ~Dpow

lin and n1⊥n0 are known for general
and diagonal g tensors [23,53,59,60] and spelled out into
polar coordinates [20,22,54,61].
Equations (4) and (5) are fully analytical and do not

require numerical matrix diagonalization. They apply only
in the absence of fine interactions and interactions with
other spins or nuclei. More complicated spin systems are
described by the more general expressions from Eqs. (2)
and (3). These require matrix diagonalization to compute
jai and jbi, needed to calculate μ. Although it is customary
to define a z axis along B0 and an x axis along B1 (for linear
polarized mw radiation with B1⊥B0), no such axis defi-
nitions are used here. All expressions are representation
independent. The new expressions are implemented in the
EPR simulation software EASYSPIN [19].
Next, we validate the new theory experimentally and

show that it can be used to extract new information about
quantum systems from EPR data. In a beam EPR experi-
ment, we measured transition intensities of high-spin FeIII

ions (spin 5=2) in a powder sample of hemin as a function
of the polarization angle α between the static magnetic field
and the magnetic field component of the radiation.
Experiments were conducted at the Frequency Domain
Fourier Transform THz-EPR setup at BESSY II [33]. The
high-frequency and high-field EPR data were obtained in
Voigt geometry with a beam of broadband unpolarized
radiation that excited ground-state EPR transitions at 7.5 T
and 2 K in the frequency range between 400 GHz and
1200 GHz. Detection was achieved with a broadband
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superfluid He cooled bolometer equipped with a wire grid
in front of the detector. Further experimental details are
given the Supplemental Material [51]. During the experi-
ment, the wire grid, which served as polarization
selector, was rotated in steps from n1∥n0 (α ¼ 0°) to
n1⊥n0 (α ¼ 90°).
EPR transitions were observed at 458 GHz and 845 GHz.

The two lines result from hemins oriented such that the
external magnetic field is perpendicular to the molecular
hard axis. Other orientations give rise to lines of much
smaller intensity at other frequencies. As shown in Fig. 2,
the two lines have opposite polarization dependence: the
line intensity at 458 GHz increases with increasing α while
that of the 845 GHz line decreases. Figure 2 shows
theoretical intensities based on Eq. (3a). They fit the
experimental data well.
The EPR line at 458GHz corresponds to a transition from

the ground state to the first excited state (see inset in Fig. 2),
with opposite parity [62]. For this transition, the MTDM
is complex, perpendicular to n0, and has odd parity. The
line intensity is proportional to ð1 − ξ21Þjμj2 ¼ jμj2sin2α
[see Eq. (3a)]. On the other hand, the 845 GHz line
corresponds to a transition from the ground state to the
second excited state, which has the same parity as the
ground state. μ is real, parallel to n0, and of even parity.
The transition rate is proportional to ξ21jμj2 ¼ jμj2cos2α.
The polarization dependence is reversed.
This EPR linear dichroism experiment shows that the

polarization dependence of EPR line intensities can be used
to determine parities of the states involved in EPR
transitions. This is valuable structural information espe-
cially for more complicated spin centers like molecular
nanomagnets, where the parity determines quantum tun-
neling rates [63–66]. The experiment presented here was
performed on a unique very-high-frequency EPR setup.
However, the general theory outlined here might inspire
similar experiments at lower frequencies, exploring easily
rotatable microresonators [67], flexible and twistable wave-
guides, rotatable magnets, or vector magnets.
In conclusion, we derived novel general and compact

closed-form expressions for calculating magnetic transition
dipole moments and transition rates in solid-state EPR
experiments on crystals and disordered materials. The
expressions are valid for arbitrary spin centers and arbitrary
excitation geometries. They cover resonator setups and
beam experiments with unpolarized excitation, linear
polarization, and circular polarization. Furthermore, they
are independent of the choice of the reference frame and do
not involve Euler angles. Specification of the vectors n0, n1
or nk, and μ is sufficient. The derivations show that the
concept of magnetic transition dipole moment (both the
operator and its transition matrix element) is useful for
the description of general EPR experiments. With this new
theory in hand, EPR spectra from experimental setups with
nonstandard geometries will give access to previously
inaccessible information contained in line intensities and

line shapes. This will have impact on high-field EPR and
frequency-domain EPR, as well as on EPR experiments
involving resonant microstructures with inhomogeneous
fields and spatially varying excitation geometries.
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