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We generalize the reaction-diffusion model Aþ B → 0 in order to study the impact of an excess of A
(or B) at the reaction front. We provide an exact solution of the model, which shows that the linear response
breaks down: the average displacement of the reaction front grows as the square root of the imbalance.
We argue that this model provides a highly simplified but generic framework to understand the square-root
impact of large orders in financial markets.
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In most systems, small perturbations induce propor-
tionally small responses: this is the linear response
regime. Critical systems are exceptions to this general
rule: long-range correlations make these systems particu-
larly fragile. A well known example of an anomalously
large response is the magnetic susceptibility close to the
para- or ferromagnetic transition. In fact, exactly at the
transition, the magnetization M is zero in the absence of
an external force (the magnetic fieldH), but behaves when
H → 0 as M ∼Hδ with δ < 1 (for example δ ¼ 1=3 in
mean-field, see, e.g., Ref. [1]). The fact that δ < 1 is
tantamount to saying that the linear response coefficient
limH→0M=H diverges at criticality, indicating anomalous
fragility. Conversely, the observation of a diverging linear
response suggests a nontrivial underlying organization of
the system. This is partly the reason why the recently
reported universal anomalous impact of small trades in
financial markets has triggered a spree of activity (see,
e.g., Refs. [2–5] and references therein). Market impact is
not only a problem of paramount importance for finance
practitioners (for whom market impact amounts to trading
costs), it also relates to one of the most fundamental
questions in theoretical economics: Why and how do
prices change? Market impact is at the core of the
sophisticated mechanism through which markets absorb
trading information as an input and produce prices as an
output [6,7]. The failure of such a mechanism can have
dramatic consequences for society, ranging from market
inefficiencies to full-fledged crashes (see, e.g., Ref. [8]
and references therein).
More precisely, by “market impact”wemean the average

price change I after the sequential execution of a total
volumeQ of contracts (which we call metaorder). Contrary
to the models customarily employed in the field of
theoretical economics [9], in which I is traditionally
assumed to be a linear function of Q, a growing consensus
in the empirical literature indicates that impact follows a
concave law, which is well described by the so called
“square-root” impact formula

I ¼ YσD

�
Q
VD

�
δ

; ð1Þ

where δ is an exponent in the range 0.4–0.7, and σD and VD

are, respectively, the daily price fluctuations and the daily
traded volume [2,4,5,10–12]. Y is a dimensionless coef-
ficient, which is found to be of order 1.
As mentioned above, the fact that δ < 1 indicates that

markets are inherently fragile: vanishingly small traded
volumes are expected to have a disproportionate impact on
prices. Even more surprisingly, the law appears to be
universal, as it is to a large degree independent of details
such as the type of contract traded, the geographical
position of the market venue (U.S., Europe, Asia), the
time period (1995 → 2014), or the strategy used to execute
the metaorder [4]. It appears to be extremely robust against
microstructural changes; for example, the rise of high-
frequency trading (HFT) in the last ten years seems to have
had very little effect on the validity of Eq. (1) (compare
Refs. [2,11], which use pre-2004 data, with Refs. [4,5,10],
which use post-2007 data). Such a universality is the main
reason why one should expect simple models to be able to
reproduce the square-root law. If the relevant properties
of the market are included in a stylized model, the low-
frequency properties of the dynamics (say, from some
hours to a few days) should be correct even if the high-
frequency (say, below 1 min) description is inaccurate or
not realistic.
In this spirit, we propose here a coarse-grained model of

the market much inspired by Refs. [13,14], which relies on
two fundamental ingredients in order to describe market
dynamics: (i) participants place and update orders to buy
(sell) at prices as low (high) as possible, and (ii) market
clearing (buy orders and sell orders annihilate each other
when at the same price). Therefore, we postulate, as in
Refs. [4,5], the existence of a latent order book (modeled as
a one-dimensional grid of length L) encoding the trading
intentions of the market participants: in this setting each
price level x can be populated by particles of two types
(B and A), representing, respectively, the intended orders to
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buy (bids) and to sell (ask). In practice, such a book can
be seen as a proxy for the supply and demand curves at
the intraday scale. Such a point of view tacitly assumes
segregation among the two particle types (i.e., supply and
demand curves do not overlap), and implicitly enforces the
presence of a finite spread separating the highest bid (the
rightmost B particle) and the lowest ask (the leftmost A
particle) through a market clearing condition.
The stochastic dynamics that we propose for the particles

populating the book consists of a hopping process (all
particles can jump either right or left with probabilityD per
unit time) and of a reaction process mimicking the market
clearing condition: particles at the same site have a
probability λ per unit time to start a reaction process (we
will eventually consider the limit λ → þ∞). The reaction
process may have three different outcomes, chosen at
random according to the value of two parameters p and m:

Aþ B → 0 with probability 1 − p; ð2Þ

Aþ B → B with probability p
1þm
2

; ð3Þ

Aþ B → A with probability p
1 −m
2

: ð4Þ

For p ¼ 0, this boils down to the model studied in
Refs. [13,14], but this setting is too restrictive as it does
not allow one to introduce a bias m, which is of course a
crucial ingredient to study impact. In fact, the events
associated with p > 0 can be interpreted as due to the
action of an additional agent, who adds to the system an
extra bid particle [with probability ð1þmÞ=2] or an extra
ask particle [with probability ð1 −mÞ=2]. The lack of a
conservation law for the difference between the number of
buy and sell particles is then explained by the imbalance
introduced by such an extra agent. Finally, we suppose that
a flux of particles per unit time JB ¼ JA ¼ J (of type B and
A) is inserted at the boundaries (respectively, at sites 1 and
L). Hence, the system lies in a nonequilibrium state due to
the presence of an external particle pressure, representing
the flux of orders coming from new participants, that can
become interested in entering the market. The model will
only make sense if the results do not depend on L, which is
to a large extent arbitrary.
The master equation for this system yields an equation

for the average density of A and B particles, which in the
regime 1 ≪ x ≪ L can be approximated by the continuous
dynamics:

∂hbðx; tÞi
∂t ¼ D

∂2hbðx; tÞi
∂x2 − λuAhaðx; tÞbðx; tÞi; ð5Þ

∂haðx; tÞi
∂t ¼ D

∂2haðx; tÞi
∂x2 − λuBhaðx; tÞbðx; tÞi; ð6Þ

where aðx; tÞ and bðx; tÞ are the densities of particles of
type A and B, and uA ¼ 1 − p(ð1þmÞ=2) and uB ¼
1 − p(ð1 −mÞ=2). In this limit the boundary conditions
are of Neumann type:

J ¼ −D
∂hbðx; tÞi

∂x
����
x¼0

; 0 ¼ −D
∂hbðx; tÞi

∂x
����
x¼L

; ð7Þ

0¼−D
∂haðx;tÞi

∂x
����
x¼0

; −J¼−D
∂haðx;tÞi

∂x
����
x¼L

: ð8Þ

This model is extremely hard to solve in one dimension
due to the presence of strong correlations among the
particle positions [15,16]. Although in higher dimension
(or in the small coupling regime λJ−1=2D−1=2 ≪ 1) the
mean-field approximation habi ¼ haihbi is quite accurate,
in one dimension and in the large coupling regime
λJ−1=2D−1=2 ≫ 1 (which is relevant here), interactions are
too strong for the mean-field prediction to be even quali-
tatively correct [15,16]. In that case, even in the simpler case
p ¼ 0, it is necessary to rely on approximate results obtained
by using sophisticated renormalization group techniques
[17,18] or to resort to numerical simulations [19,20].
In our setting, the symmetric case p ¼ 0 corresponds to

the case in which the flux of the market is balanced; i.e., no
metaorder is being executed. Hence, it represents the
market unperturbed state, and it is then worth discussing
its main features. First, we remark that in the symmetric
case uA ¼ uB, due to the conservation law for the difference
of A and B particles, the combination φ ¼ b − a follows
the diffusion equation ∂tφ ¼ D∂2

xxφ, subject to the boun-
dary condition −D∂xφjx¼0;L ¼ J. Its associated stationary
state is a linear density profile:

φstðxÞ ¼ −ðJ=DÞðx − L=2Þ: ð9Þ

Second, the interface of the model x�t (corresponding to the
traded price) diffuses anomalously: while at large times
the boundaries obviously confine the system between
x ¼ 0 and x ¼ L, in the small time regime tD=L2 ≪ 1
the interface diffuses very slowly, as shown in the bottom
curve of Fig. 1. We numerically find the law of jx�t − x�0j to
be compatible with ∼ log t, as opposed to the case J ¼ 0
considered inRef. [17] forwhich jx�t −x�0j∼t1=4. In particular
for L → ∞ the interface—and hence the midprice—is
subdiffusive. Despite being at odds with empirical obser-
vations of actual financial markets, subdiffusion of the
price within the model is expected from the confining
effect of the order book itself. Reproducing the diffusive
behavior of prices in financial markets (namely, the scaling
jx�t − x�0j ∼ t1=2 for times larger than a few trades) would
require additional terms in our model, accounting for the
strategic interactions of the traders (see Refs. [4,5] for a
detailed discussion of this point). Summarizing, Eq. (5)
alone provides an appropriate description for the linear
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dynamics of price, but fails to describe its quadratic
variations.
The goal of the present discussion is to investigate the

change in the interface position due to an imbalance in the
order flux, i.e., the case p ≠ 0, m ≠ 0. We model such an
imbalance by supposing that the system, after being
prepared in the symmetric stationary state at time t ¼ 0,
is subject to a sudden change of the values p and/or m
controlling the imbalance parameters uA, uB until a time
t ¼ T. In that case, it is convenient to study the evolution
of the linear combination ψ ¼ uBb − uAa, which again
follows the diffusion equation

∂hψðx; tÞi
∂t ¼ D

∂2hψðx; tÞi
∂x2 ð10Þ

with boundary conditions

JuB ¼ −D
∂hψðx; tÞi

∂x
����
x¼0

; JuA ¼ −D
∂hψðx; tÞi

∂x
����
x¼L

;

ð11Þ

where in particular uA ≠ uB for 0 < t < T. The interest in
the field ψ lies in the fact that its zeros coincide with the
zeros of the field φ ¼ b − a, because of the reduced size
of the reaction zone in the regime λ → ∞. Hence, by
identifying the average price change hx�t i with the point

verifying hφðhx�t i; tÞi ¼ 0, it is possible to connect the
solution of Eq. (10) with the expected position of the
interface at a time t ¼ T after the initial perturbation.
The solution of Eq. (10) subject to the boundary conditions
(11) and the initial conditions (9) is

fðy; τÞ ¼ 1

12
ðuB − uAÞ −

uB þ uA
2

yþ uB − uA
2

y2

þ ðuB − uAÞτ −
uB − uA

2

X∞
n¼1

cosð2πnyÞ
π2n2

e−4π
2n2τ;

ð12Þ

where we have defined the dimensionless variables

τ ¼ DT=L2; ð13Þ

y ¼ x=L − 1=2; ð14Þ

fðy; τÞ ¼ D
JL

ψ(yðxÞ; TðτÞ): ð15Þ

An inspection of Eq. (12) at τ ¼ 0 reveals that the motion of
the interface is due to the discontinuous shape of ψðx; 0Þ
right after the perturbation: the smooth stationary shape of
φstðxÞ is mapped into the piecewise linear function ψðx; 0Þ.
Additionally, the boundary conditions for ψ are asymmet-
ric, implying that in the modified coordinates a current is
induced due to the mismatch of the incoming fluxes. The
trajectory of the average midpoint hx�Ti ¼ Lð1=2þ y�τÞ can
be computed by exploiting the relation

0 ¼ d
dτ

fðy�τ ; τÞ ¼
∂f
∂y _y�τ þ

∂f
∂τ ; ð16Þ

while the partial derivatives can be extracted from Eq. (12),
which implies

∂f
∂τ ¼ðuB−uAÞΘ3ðπy;e−4π2τÞ;
∂f
∂y¼−

uBþuA
2

þðuB−uAÞ
Z

y

0

dy0Θ3ðπy0;e−4π2τÞ; ð17Þ

whereΘ3ðz; qÞ is the Jacobi theta function of the third kind.
The above expressions can be used to solve Eq. (16) with
respect to _y�τ . A small τ expansion for Θ3ðπy; e−4π2τÞ leads
finally to a differential equation for the trajectory y�τ, whose
solution is

y�τ ¼ 2αðuB=uAÞτ1=2; ð18Þ

where the function αðzÞ satisfies the transcendental
equation

FIG. 1. Fluctuations in the interface position for a modified
model in which the terms uA and uB are random variables. In
particular we change Eq. (2) by choosing with probability 1 − p
the sign of the reaction (Aþ B → either A or B) according to a
zero-mean, long-range correlated process with tail exponent γ.
We find that the diffusion properties of the model change even
though the impact properties are unaffected. We plot the variance
of the interface position for different values of γ for the set of
parameters L ¼ 400, J ¼ D ¼ 1, λ ¼ 1000, and p ¼ m ¼ 0.
The inset shows a perfect data collapse for the impact curves
(as a function of T) obtained at different γ.
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αðzÞ
�
zþ 1

z − 1
− erf½αðzÞ�

�
−

1ffiffiffi
π

p e−α
2ðzÞ: ð19Þ

Equations (18) and (19) are our central result: they state that
the average change in the interface position grows as the
square root of the rescaled time. Moreover, when putting
back the original units, one finds that hx�Ti − L=2 ¼
2αðDTÞ1=2, independent of L. Hence, in the infinite size
limitDT=L2 → ∞ the impact is unaffected by the long size
behavior of the system. Finally, in this regime Eq. (18)
becomes exact, as the large L regime corresponds to the
small τ limit. Numerical simulations of the model have
been performed in this regime, finding perfect agreement
with Eq. (18) (see Fig. 2).
In order to relate these findings to empirical results on

market impact [Eq. (1)], we need to link the variation of the
midprice hx�Ti to the executed volume Q. According to the
financial interpretation suggested above, p > 0 represents
the action of an additional agent, which for m ≠ 0 is
introducing a bias in the volume imbalance. Hence, it is
natural to identify such a bias as the volume Q executed
by the agent. Its average is equal to hQi ¼ R

dxhðb − aÞi ¼
D
R
dtðh∂xaix¼x�;þ þ h∂xbix¼x�;−Þ, the average number

of A particles that reached the interface minus the number
of B particles that touched the reaction zone within

t ¼ 0 and t ¼ T. Another quantity of interest is hVi ¼
D
R
dtðh∂xaix¼x�;þ − h∂xbix¼x�;−Þ, which is equal to the

total number of particles that reacted within that same
time interval. One can accurately approximate hQi and hVi
by mapping Eq. (17) on the original coordinate system, so
as to integrate in time the fluxes through the interface.
Exploiting again the properties of the Jacobi theta function
of the third kind, one finds

hQi ¼ β0ðuB=uAÞðJTÞ; ð20Þ

hVi ¼ β1ðuB=uAÞðJTÞ; ð21Þ

where the functions βnðzÞ are given by

βnðzÞ ¼
ðz2−n − 1Þ1þn − erf½αðzÞ�ðz1þn − 1Þ2−n

2z
: ð22Þ

Equation (20) leads to an approximate estimate of the
impact of the type I ¼ 2αðQD=β0JÞ1=2, in agreement
with the simulation results shown in the inset of Fig. 2.
Equation (22) characterizes the imbalance parameter
z ¼ uB=uA as a function of the local participation rate of
the additional agent ϕ ¼ 2Q=ðQþ VÞ, whose average is
equal in the mean-field approximation to

hϕðzÞi ¼ 2β0ðzÞ
β0ðzÞ þ β1ðzÞ

: ð23Þ

Equation (22) also identifies the Y term appearing in Eq. (1)
with the combination YðzÞ ¼ 2αðzÞβ−1=20 ðzÞ. For small ϕ,
this tends to Y ≈ ðϕ=πÞ1=2, whereas at large ϕ, Y slowly
tends to Y∞ ¼ 21=2 ≈ 1.41. Interestingly, empirical obser-
vations indeed suggest that Y is roughly independent of ϕ.
The above results hold in an extremely broad context.

(i) If drift terms of the type μh∂xai, μh∂xbi or if decay terms
−νhai, −νhbi are added to Eq. (5), then an additional time
scale appears in the model. In this case Eqs. (18) and (22)
still provide a correct description of the system in the
regime of small times. Second, (ii) when changing the
reaction term λuA=Bab to any other symmetric combination
of a and b, the equation for ψ will be unaltered. This
implies the same equation for x�t , as for infinite λ the zeros
of φ and ψ will still coincide. Hence, by appropriately
tuning the reaction term (see Fig. 1) it is possible to change
the diffusion properties of the system all the way from log t
to t1=2 without affecting the square-root impact law (18).
In this Letter, we have provided an analytically tractable

implementation of the type of system proposed in Ref. [4]:
in our model market clearing indeed induces a locally linear
(V-shaped) liquidity profile close to the traded price, which
in turn induces a square-root impact shape, as suggested by
the mean-field argument in Ref. [4]. However, it is highly
nontrivial that such a mean-field argument gives the correct
answer since the fluctuations in the interface position are in
fact found to be much larger than the impact itself. It is

FIG. 2. Main figure: average change in the position of the
midpoint I ¼ hx�t i − L=2 after a perturbation of duration T. We
compare the results of simulations of systems of different length
(dashed lines) with the analytical prediction valid in the limit
L → ∞ (solid line), finding very good agreement. We used the
parameters J ¼ D ¼ 1, p ¼ 0.5, andm ¼ 0.75. The limit λ → ∞
is enforced by setting λ ¼ 103. The crossover of the curve to the
linear regime (indicating Dt=L2 ≳ 1) appears in the curve for
L ¼ 50. Inset: average change in the midpoint position I against
the volume imbalance Q for a simulated system of length
L ¼ 100 (dashed lines). The solid line indicates the mean-field
(MF) estimate predicted by Eq. (20). We have chosen the
parameters D ¼ J ¼ 1, λ ¼ 1000, p ¼ 1, and m ¼ 0.5.
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therefore very important to exhibit a model where the
square-root impact can be established analytically (rather
than numerically, as in previous papers [4,5]). Even though
the exact predictions of our stylized model might depend on
the actual choice of the reaction parameters, our results
suggest that in a one-dimensional system of annihilating
particles, a concave dependence of the interface position
on the flux imbalance should be regarded as the rule, rather
than as the exception. This confirms that very generic
features (diffusion and market clearing condition) are, as
surmised in Ref. [4], sufficient to explain the anomalous
reaction of prices to volume imbalances. As emphasized in
previous papers and recalled in the introduction, this also
means that markets are “critical,” i.e., generically close to
an instability, since the liquidity is vanishingly small in the
vicinity of the current price. Liquidity fluctuations setting
the noise level for ψðx; tÞ are thus bound to play a crucial
role, and we expect these fluctuations to be at the heart of
the turbulent dynamics of financial markets [4,8,21].
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