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We show that a single DNA molecule confined and extended in a nanochannel can be dynamically
compressed by sliding a permeable gasket at a fixed velocity relative to the stationary polymer. The gasket
is realized experimentally by optically trapping a nanosphere inside a nanochannel. The trapped bead acts
like a “nanodozer,” directly applying compressive forces to the molecule without requirement of chemical
attachment. Remarkably, these strongly nonequilibrium measurements can be quantified via a simple
nonlinear convective-diffusion formalism and yield insights into the local blob statistics, allowing us to
conclude that the compressed nanochannel-confined chain exhibits mean-field behavior.
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Experiment, simulation, and scaling analytics are
converging on a comprehensive picture regarding the
equilibrium behavior of nanochannel-confined semiflexi-
ble, self-avoiding chains [1]. Yet, strongly nonequilibrium
behavior of confined polymers is largely unexplored from
either an experimental or theoretical point of view. From
the perspective of applications, quantifying nonequilibrium
behavior is essential to overcoming a variety of technical
challenges related to nanochannel DNA mapping [2,3],
including the entry of polymers into nanochannels, inter-
action with defects [4], and modeling chain relaxation [5].
In particular, there is a need for experimentally validated
models that can predict how confined and highly concen-
trated DNA evolves in time and space [6–8] (e.g., to model
entropic trap arrays [9,10] and elucidate biophysical
problems ranging from the viral ejection of DNA into
cells to chromosomal dynamics [11]).
In this Letter a sliding gasket is used to dynamically

compress single nanochannel confined double-stranded
DNA (see Fig. 1). The gasket is realized via our “nanodozer
assay”: a bead is optically trapped inside the nanochannel
with a diameter that is a large fraction of the channel width;
a nanostage is then used to translate the nanofluidic device
at a fixed trap position, sliding the bead relative to the
DNA molecule with a speed V. By varying V over 2 orders
of magnitude (0.1–10 μm=s), we deduce the dynamic
response of single nanochannel confined polymers to
forcing conditions ranging from near equilibrium to
strongly out of equilibrium. We find that the dynamically
forced chains will undergo transient dynamics and reach a
well-defined highly compressed steady state. This steady-
state behavior is characterized by a time-invariant average
extension r and a concentration profile cSðxÞ (units of chain
contour per unit channel length). The concentration profile,
according to a blob-based model we introduce, encodes
information relating to the local blob statistics, allowing us

to discriminate between fluctuating and mean-field descrip-
tions of the compressed chain. Moreover, we observe
distinct dynamical compression regimes, separated by a
critical speed Vc, in agreement with the blob model
predictions. While electric and hydrodynamic forcing
has been used to compress DNA against barriers in nano-
channels [4,5], these experiments were relatively uncon-
trolled and it was not possible to quantify chain dynamic
response as a function of applied forcing (as demonstrated
here). J. Pelletier et al. [11] used an optically trapped
bead inside a microchannel (1 μm in diameter) to compress
an E. coli chromosome against a barrier formed by a blunt
ended channel, but this study focused on equilibrium
compression and did not explore the dynamic regimes
described here.

FIG. 1 (color online). (a) A 3D graphic of a bead gasket
initiating compression of a nanochannel-confined polymer mol-
ecule. (b) The device geometry: an array of nanochannels spans
the gap between two U-shaped microchannels. The microchan-
nels, used to load DNA and beads into the nanochannels, are
coupled to four reservoirs that contain sandblasted loading ports.
(c) An SEM of the 300 × 310 nm nanochannels used in the study
(2 μm scale bar). (d)–(g) A graphical compression event, shown
in the frame comoving with the bead.
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The nanochannels used were fabricated in fused silica
wafers (HOYA) using the protocol described in Ref. [1].
The channels have a dimension of ∼300 × 310 nm, as
obtained from SEM imaging and surface profilometry. The
chips were directly bonded to fused silica coverslips to
form all silica channels. The devices were wet with a buffer
consisting of a 10 mM tris buffer at pH 8.0. Compression
experiments were conduced with T4 bacteriophage DNA
(Nippon Gene, 166 kbp) stained with YOYO-1 at an
intercalation ratio of 10:1, leading to a total contour length
of roughly 63.7 μm [12]. The mean equilibrium extension
of nanochannel-confined T4 is r0 ¼ 14.5� 0.3 μm. The
nanogaskets were formed using fluorescent 200 nm poly-
styrene beads (Duke Scientific). The devices were incu-
bated for 24 h in 8% PVP-10 (Polyvinylpyrrolidone,
Sigma-Aldrich) to prevent the sticking of beads to channel
surfaces. In addition, β-mercaptoethanol at 2% was added
as an antinicking and bleaching agent. Our optical setup
was based on a iXon EMCCD camera (Andor) mounted
on a Nikon Eclipse Ti microscope using a 100 × N:A. 1.5
oil immersion objective (Nikon). A metal-halide lamp was
used as an excitation source (Xcite). The optical trap was
formed around a 1064 nm laser (Crystal Laser), expanded
and introduced into the back-focal aperture of the objective.
The device is moved with respect to a fixed trap position
via a combined micro- (Prior) and nanostage (Mad City).
The T4 DNA is driven from the microchannels into the

nanochannel array by pneumatic pressure created via a
steady N2 flow applied at the reservoir. The optical trap is
then used to capture a single 200 nm bead from the
microchannels and introduce the bead into a DNA con-
taining nanochannel. In certain cases, multiple beads are
trapped simultaneously to avoid DNA slippage through the
gasket at high compression speeds. Once the bead is
brought into proximity of a given DNA, the nanostage
affects a one-dimensional translation driving the DNA
against the bead at speed V. The nanostage translation is
started a few seconds after recording begins in order to
obtain a measurement of the molecule equilibrium exten-
sion r0 and average equilibrium intensity I0. In order to
view the compression event in its entirety, we transform the
image series into a kymograph representation by reslicing
so that time is displayed along the x axis and nanochannel
position along the y axis [see Fig. 2(e)]. As the bead comes
into contact with the DNA, it starts deforming in the bead’s
immediate vicinity, undergoing a transient compression
before reaching a final steady state. The steady-state
concentration profile csðxÞ of the nanochannel-confined
polymer (units of contour per unit volume), proportional to
the local fluorescence, can be measured by averaging the
frames taken over the steady portion of the kymograph [see
inset of Fig. 2(f)]. In order to remove the intensity profile of
the bead, the bead’s intensity profile is obtained independ-
ently from frames taken prior to collision and then
subtracted from the profile [see Fig. 2(f)]. The steady-state

profile is then normalized to I0: note that IðxÞ=I0 ¼
cðxÞ=c0. Figure 2 shows representative kymographs and
steady-state profiles for compression events taken for
four different sliding speeds. For the very lowest speeds
(< 0.5μm=s), we observe steady-state profiles that contain
a “flat” portion at the equilibrium concentration connected
to a ramp-type profile [Figs. 2(b) and 2(d)]. For higher
speeds we observe only ramp-type profiles [Figs. 2(f)
and 2(h)]. The ramp profile is well fit to a linear model
[Figs. 2(b), 2(d), 2(f), and 2(h)] with a slope or “ramp rate”
scaling linearly with V [Fig. 3(a)].
In addition to the ramp rate we can extract the dynamic

chain extension (r) and the intensity measured at the
molecule edge opposite the bead normalized to I0
(fedge). In order to extract these quantities from the intensity
profiles, we must take into account that the measured
ramp profile, assumed to have a linear form, is in fact the
convolution of the true DNA intensity profile with the
optical point-spread function, represented as a Gaussian
function with a standard deviation of σ. The convolution
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FIG. 2 (color online). (a),(b) and (c),(d) and (e),(f) and (g),(h),
respectively, show kymographs and corresponding steady-state
ramp profiles with linear ramp fits for compression events with
V ¼ 0.1 μm=s [(a),(b)], 0.25 μm=s [(c),(d)], 1 μm=s [(e),(f)], and
10 μm=s [(g),(h)]. The vertical scale bar is 10 μm; the horizontal
bar gives a time scale of 2 s capturing compression events
progressing from left to right. (a),(b) is a compression event at a
very low V where the molecule is slightly compressed and
translocating close to its equilibrium state. Note that profiles (a),
(b) and (c),(d) exist in regime II. The boxes on (e) snapshot
(1) bead intensity, (2) transient dynamics, and (3) steady-state
regime. The inset in (f) shows the intensity profile prior to bead
subtraction.
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can be performed analytically, leading to a fitting function
that enables the self-consistent extraction of r and fedge.
The extension r as a function of V is shown in Fig. 3(c).
The r versus V data appear to follow a power law (V ∼ Vβ)
for speeds above a critical speed Vc (in the range of
1–2 μ=s). For speeds below Vc the chain is only weakly
compressed and rises to r0 as V approaches zero. The
normalized edge intensity is flat and consistent with unity
for V < Vc and rises above unity for V > Vc [Fig. 3(d)].
The distinct behaviors of r and fedge above and below Vc
suggest that Vc may demarcate two different dynamical
regimes.
In order to gain a more quantitative insight into the

compression phenomena, we introduce a dynamical blob-
based model [6]. The bead-DNA interaction is most
conveniently modeled by working in the frame of reference
moving with the bead (gasket), in which we assume the
molecule, of contour length L, feels a uniform flow of
speed V compressing it against the gasket but does not
translate [Fig. 4(a)]. Let x ¼ 0 denote the edge of the chain
away from the bead and let x ¼ r denote the molecule edge
facing the bead (gasket). A blob at position x, for channels
in our size range, will feel a drag force fdrag ≃ ηxV [13] and
will start to deform when fdrag ≃ kBT=D [14]. The drag
force is necessarily highest for the blob facing the gasket
(i.e., at x ¼ r): this blob will be the first to deform as the
speed is increased from zero, initiating compression of the

chain. In fact, this blob will deform at a speed V⋆ satisfying
ηr0V⋆ ≃ kBT=D. For speeds V < V⋆, the chain will slide
down the channel at its equilibrium extension r ¼ r0
[regime I, Figs. 4(a) and 4(b)]. For speeds V > V⋆ the
chain will compress, but only partially [regime II, Figs. 4(c)
and 4(d)], leaving a portion of the chain at the con-
stant equilibrium concentration c0 ¼ L=r0. The junction
between the compressed and unaltered portions of the
chain occurs at x0 ≃DV⋆⋆=V, where V⋆⋆ ¼ kBT=D2η is a
characteristic velocity in the channel. As the sliding speed
is increased still further, the blob at x ¼ 0 eventually
deforms, at which point the entire chain will be compressed
[regime III, Figs. 4(e) and 4(f)]. This happens at V⋆⋆, for
which ηDV⋆⋆ ¼ kBT=D.
The steady state is reached when the convective current

of polymer contour cV balances the diffusional current
Dcð∂c=∂xÞ [6]:

Dc
∂c
∂x ¼ cV: ð1Þ

The quantityDc is a cooperative diffusion coefficient and is
itself a function of chain concentration, determined via the
local blob statistics by Dc ¼ kBT=ηξ, with η representing
the viscosity and ξ the blob size [6,15]. The blob size is
given in terms of Nb, the number of Kuhn lengths per blob
by ξ ∼ Nν

b. If the blobs are ideal, ν ¼ 1=2; this corresponds
to a mean-field regime. If the blobs exhibit Flory scaling,
ν ¼ 3=5; this corresponds to classic fluctuating semidilute
solution behavior [16,17]. We disregard throughout the
Letter subtle dependences on the segment aspect ratio
ϵ ¼ w=P [18] (with w being the effective segment thick-
ness, P the persistence length), and we focus on the most
robust feature associated with the exponent ν, which
dictates the local blob statistics. If we envision the confined
polymer as consisting of a uniform packing of blobs
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FIG. 3 (color online). (a) The slope function fslope versus sliding
speedwitha linear least-squares fit.Thebest-fit slopeAslope ¼ 0.17�
0.01 s=μm2. (b) Histogrammed values of the χ2 ratio for fits to the
experimental intensity profiles with α ¼ 1 and α ¼ 4=3. The mean
value of the χ2 ratio is 0.74� 0.03, strong evidence that α ¼ 1 is
correct. (c) The steady-state extension rmin=r0 as a function of sliding
speed with a least-squares fit (the bold line) to the combined blob
model prediction for regime II and III, yieldingβ ¼ 0.48� 0.2 and a
self-consistently determined Vc ¼ 1.4� 0.5 μm=s. The prediction
for β ¼ 4=7 (ν ¼ 3=5) is shown for comparison (the dashed curve).
(d) The steady-state edge intensity: the edge intensity is consistent
with unity (thedashed line) forV < Vc and then risesmonotonically.
A power-law fit (the bold line) to the high-V points (V > 2 μm=s)
yields γ ¼ 0.44� 0.15.
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FIG. 4 (color online). (a) A graphic and (b) a schematic of
the steady-state concentration profile csðxÞ for sliding speeds
V < V⋆ (regime I): in this regime the polymer translates with
the bead. (c) A graphic and (d) a schematic of csðxÞ for sliding
speeds V⋆ < V < V⋆⋆ (regime II): in this regime the polymer is
partially compressed. (e) A graphic and (f) a schematic of csðxÞ
for V > V⋆⋆ (regime III): in this regime the polymer is entirely
compressed.
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[16,18], we find ξ ∼ c−δ, with δ ¼ ðν=3ν − 1Þ (see Table I
for values of δ for blobs with ideal and Flory scaling).
Equation (1) can be integrated to obtain the steady-state

concentration profile once the concentration at the ramp
edge is specified. Here we discuss only the results of the
model (see the Supplemental Material [19] for full details).
The regime III concentration profile, with μ≡ V=V⋆⋆, is

cSðxÞ=c0 ¼ fedgeðμÞ
�
1þ fslopeðμÞ

f1=αedgeðμÞ
x

�
α

: ð2Þ

The profile exponent α ¼ 1=δ. The edge function fedge
determines the chain concentration at the molecule edge
opposite the gasket (relative to c0): fedgeðμÞ ¼ μγ for μ ≥ 1
and fedgeðμÞ ¼ 1 for μ < 1. The slope function fslope
determines the V dependence of the profile ramp rate:
fslopeðμÞ ¼ A0D−1μ≡ AslopeV for all V. The quantity A0 is
a scaling prefactor (to be obtained from an experiment).
The regime II profile is similar to Eq. (2), but contains an
initial flat portion at c0 up to the junction position x0 at
which cðx0Þ ¼ c0 [Fig. 4(d); see also the Supplemental
Material [19], Eq. (3)]. Finally, we note that L is fixed,
so that integrating Eq. (2) and back solving yields an
expression for rðμÞ [see the Supplemental Material [19],
Eqs. (5), (7), and (8)]. The key result is that for V > V⋆⋆,
r ∼ μ−β, with β ¼ α=ð1þ αÞ ¼ ð3ν − 1Þ=ð4ν − 1Þ.
The blob model predictions agree extremely well with

our experimental results. First, as observed, the blob model
predicts at low speeds steady-state profiles consisting of a
ramp jointed to a flat segment at the equilibrium concen-
tration [appropriate for regime II, Fig. 4(d)]. At high
speeds the blob model predicts a pure ramp [appropriate
for regime III, Fig. 4(f)]. Second, Eq. (2) using the mean-
field exponent α ¼ 1 is indeed consistent with the observed
linear behavior of the ramps. To test further whether the
ramps are linear or might be better characterized by the
slightly higher fluctuating value of α ¼ 4=3, we computed
the ratio of the χ2 values resulting from fits of ramped
profiles to Eq. (2) for α ¼ 1 and α ¼ 4=3 [Fig. 3(b)]. The
mean value of the χ2 ratio is 0.74� 0.03, significantly
below unity and indicating that the mean-field exponent
(α ¼ 1) describes our data best as initially assumed. Third,
fedge [Fig. 3(d)] exhibits behavior in agreement with the

blob model: flat and consistent with unity below Vc
(expected for regime II) and monotonic rising above
(expected for regime III). Based on this observation, we
can identify the parameter Vc, the critical speed observed
on purely experimental grounds, with the theoretical
characteristic speed V⋆⋆ demarcating the boundary of
regimes II and III. Moreover, the fedge data above Vc
can be fit to a power law that yields γ ¼ 0.44� 0.15,
consistent with the mean-field value of γ ¼ 1=2 predicted
by the blob model. Fourth, the experimental r versus V
behavior is consistent with the blob model (power law
above Vc, expected for regime III, non—power law below,
expected for regime II). The combined model joining
together the blob picture’s quantitative predictions for
regimes II and III (see the Supplemental Material [19])
can be fit in the least-square sense to the entire r versus V
data set [Fig. 3(c)], yielding β ¼ 0.48� 0.2 (consistent
with the mean field) and Vc ¼ V⋆⋆ ¼ 1.4� 0.5 μm=s.
Finally, the ramp rate, as predicted, does indeed scale
linearly with V for regimes II and III [Fig. 3(a)]. The fitted
slope Aslope ¼ 0.17� 0.01 s=μm2, from which the scaling
constant can be estimated: Ao ¼ 0.07� 0.05. Note that
we do not reach regime I in our study: V⋆ ¼ ðD=r0ÞV⋆⋆∼
0.02 μm=s, an order of magnitude below the lowest V
value used.
We believe our approach could be used to probe chain

statistics over a wide range of nanochannel dimensions
and varying degrees of chain compression. We might
expect, for example, to observe different dynamical expo-
nents for larger or smaller D, especially for channels
approaching P where the chain statistics might deviate
from blob model predictions. While, precisely speaking,
our method does not probe the statistics of equilibrium
(noncompressed) chains, we believe that the statistics
observed under compression are related to the statistics
obeyed in the equilibrium (noncompressed) regimes.
In particular, it is likely that the mean-field behavior we
observe is closely connected with the extended de Gennes
regime [20,21] for equilibrium chains. The extended de
Gennes regime has been posited on theoretical grounds but
is challenging to confirm experimentally [12]. Experiments
for channels ∼P − 2P might give insights into the nature
of the still elusive “transition regime” [1]. Moreover, the
chain statistics could be a complex function of local chain
compression. The chain might transition, as it is com-
pressed, through a number of subtle confinement regimes
linking the quasi-one-dimensional channel and quasi-zero-
dimensional cavity cases (as has been suggested for flexible
polymers [22]). Finally, the nanodozer assay could be
extended beyond single polymer systems to investigate the
dynamic response of multiple polymers [23], or even
polymer solutions in confinement.
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