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Most Heisenberg-like spin chains flow to a universal free-fermion fixed point near the magnetic-field
induced saturation point. Here, we show that an exotic fixed point, characterized by two species of low-
energy excitations with mutual anyonic statistics, may also emerge in such spin chains if the dispersion
relation has two minima. By using bosonization, two-magnon exact calculations, and numerical density-
matrix-renormalization-group calculations, we demonstrate the existence of this anyonic-liquid fixed point
in an XXZ spin chain with up to second-neighbor interactions. We also identify a range of microscopic
parameters, which support this phase.
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Magnetic-field induced saturation of quantummagnets is
one of the most widely studied quantum critical points
(QCPs) of nature: magnets with axial symmetry along the
field axis become fully polarized at a critical field value. In
two and three spatial dimensions, the corresponding QCP
that separates the fully and partially polarized states
belongs to the “Bose-Einstein condensate” (BEC) univer-
sality class. [1–5] The magnets can be treated as a dilute gas
of bosons in the vicinity of the QCP by mapping the spins
that are antiparallel to the field into hard-core bosons. In
contrast, in most one-dimensional (d ¼ 1) models studied
thus far, the weakly interacting quasiparticles near the field-
induced QCP have fermionic statistics [6]. Here, we
demonstrate that a much richer spectrum of QCPs, includ-
ing novel anyonic liquids, may emerge in nearly saturated
axially symmetric spin chains.
The essential ingredient is magnetic frustration, which

can provide natural realizations of single-particle disper-
sions with degenerate minima at multiple wave vectors Q
[7]. Such single-particle dispersions do not change the
universality class of the BEC QCP in d > 1, but can give
rise to multi-Q condensates [8–11] such as long-range
ordered magnetic vortex crystals [12,13]. In contrast, long-
range order is suppressed in d ¼ 1 due to strong quantum
fluctuations. In this case, a Jordan-Wigner (J-W) trans-
formation [14,15] allows us to describe the magnet as a
dilute gas of interacting fermions near the QCP. The Pauli
exclusion principle renders all fermion-fermion interactions
irrelevant (in a renormalization-group sense), resulting in a
free-fermion fixed point with a single-minimum dispersion
relation [6]. The central question addressed in this Letter is
the fate of the d ¼ 1 QCP when magnetic frustration
generates a dispersion relation with two degenerate
minima.
We show that frustration can stabilize a novel anyonic

liquid near the field-induced QCP of spin chains. This
result extends the classification of QCPs for saturated

quantum magnets from simple theories of free bosons
(d > 1), and free fermions (d ¼ 1), to an exotic line of
QCPs with emergent Abelian anyonic statistics that inter-
polate between these two fixed points. Our anyonic liquid
consists of two species of quasiparticles originating from
the two degenerate minima (with two species of anyons,
inversion symmetry breaking is not necessary and we only
consider models with inversion symmetry [16,17]).
Quasiparticles of different species do not interact with
each other yet their commutation relations imply that they
are Abelian anyons as opposed to simple bosons or
fermions. In fact, similar theories of d ¼ 1 Abelian anyons
[18] have been envisioned in the field-theory literature
through abstract flux attachment to free bosonic theories
[19–32]. However, no experimentally relevant microscopic
models have been shown to support such anyonic liquids.
By combining bosonization, renormalization-group argu-
ments, and numerical density-matrix renormalization group
(DMRG) computations [33,34], we provide an experimen-
tally relevant realization for these elusive anyonic liquids in
the context of frustrated magnetism. Moreover, we propose
experimental signatures, which should facilitate their
observation.
The corresponding XXZ Hamiltonian [35–41]
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X
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is illustrated in Fig. 1(a). It includes up to second-neighbor
exchange interactions and a Zeeman term which allows us
to tune SzT ¼ P

jS
z
j with an external magnetic field Bz (S

z
T

is conserved because ½H; SzT � ¼ 0). For a possible physical
realization in a bilayer zigzag ladder, see Refs. [42,43].
After a J-W transformation S−j ¼ cj exp ð−iπ

P
k<jnkÞ

and Szj ¼ nj − 1
2
, with nj ¼ c†jcj, we can reinterpret H ¼

H0 þHI as a model for interacting spinless fermions:
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H0 ¼
X
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�
¼

X
k

ϵðkÞc†kck; ð2Þ

HI ¼
X

x;a¼1;2

ðΔaJanxnxþaÞ−J2
X
x

ðc†xnxþ1cxþ2þH:c:Þ: ð3Þ

Here, we have dropped the chemical-potential terms
(including Bz), which just tune the conserved

P
xnx. The

single-particle dispersion relation is ϵðkÞ ¼ J1 cosðkÞþ
J2 cosð2kÞ.We assume J1 < 0 and jJ1j < 4jJ2j to guarantee
that ϵðkÞ has two minima at k ¼ �Q with cosðQÞ ¼
−ðJ1=4J2Þ [see Fig. 1(b)]. The condition of having a nearly
saturated spin chain directly leads to a low density of
fermions, i.e., the dilute limit, in which the Fermi momenta
Q1; Q2 → Q [see Fig. 1(b)].
To bosonize H, we introduce creation and annihilation

operators in the vicinity of the Fermi points: ψaðpÞ≡
cðQa þ pÞ and cð−Qa þ pÞ≡ ψ̄aðpÞ for a ¼ 1; 2. A
Fourier transform of these fields leads to their real space
version

cx ¼ eiQ1xψ1ðxÞ þ e−iQ1xψ̄1ðxÞ þ eiQ2xψ2ðxÞ
þ e−iQ2xψ̄2ðxÞ: ð4Þ

The chiral fields ψ1ðxÞ and ψ̄1ðxÞ vary slowly in space.
This is similar to standard bosonization, but with twice the
number of species. After linearizing the dispersion relation
ϵð�Q1 þ pÞ ¼ ∓v1p and ϵð�Q2 þ pÞ ¼ �v2p [see
Fig. 1(b)], ψ2 and ψ̄1 (ψ1 and ψ̄2) become right (left)
movers, and the chiral fermions can be represented in terms
of bosonic fields

ψ1;2ðxÞ ¼
1ffiffiffiffiffiffi
2π

p e�iϕ1;2ðxÞ; ½∂xϕ1;2ðxÞ;ϕ1;2ðx0Þ�

¼ �2πiδðx − x0Þ;

ψ̄1;2ðxÞ ¼
1ffiffiffiffiffiffi
2π

p e∓iϕ̄1;2ðxÞ; ½∂xϕ̄1;2ðxÞ; ϕ̄1;2ðx0Þ�

¼ ∓2πiδðx − x0Þ:
The chiral current operators [44] can be written as jaðxÞ≡
ψ†
aðxÞψaðxÞ ¼ ð1=2πÞ∂xϕaðxÞ and j̄aðxÞ≡ ψ̄†

aðxÞψ̄aðxÞ ¼
ð1=2πÞ∂xϕ̄aðxÞ.

The noninteracting part of the Hamiltonian density
can be written in terms of diagonal chiral current
bilinears jaðxÞjaðxÞ as H0 ¼ π

P
a¼1;2

R
dx½vajaðxÞjaðxÞþ

vaj̄aðxÞj̄aðxÞ�. The interacting part, which describes
various scattering processes, has the general form

HI ¼
Z

dx½g11̄j1ðxÞj̄1ðxÞ þ g12j1ðxÞj2ðxÞ þ g12̄j1ðxÞj̄2ðxÞ

þ g1̄2j̄1ðxÞj2ðxÞ þ g1̄ 2̄j̄1ðxÞj̄2ðxÞ þ g22̄j2ðxÞj̄2ðxÞ
þ gcðψ†

1ðxÞψ̄†
1ðxÞψ2ðxÞψ̄2ðxÞ þH:c:Þ�; ð5Þ

where the coefficients g represent the effective interactions
at the fixed point, where the renormalization-group flow
stops. A derivation of the bare coupling constants in terms
of the microscopic parameters of the XXZ chain is provided
in the Supplemental Material [45].
We now introduce the fields

φðxÞ ¼ 1

2
½ϕ1ðxÞ þ ϕ2ðxÞ�; φ̄ðxÞ ¼ 1

2
½ϕ̄1ðxÞ þ ϕ̄2ðxÞ�;

ð6Þ

and their conjugate momenta ΠðxÞ ¼ − 1
2π ½∂xϕ1ðxÞ−∂xϕ2ðxÞ� and Π̄ðxÞ ¼ 1

2π ½∂xϕ̄1ðxÞ − ∂xϕ̄2ðxÞ�. Physically,
ΠðxÞ and Π̄ðxÞ are proportional to current operators from
fermions in the vicinity of the right and left minimum,
respectively [see Fig. 1(b)]. Similarly, ∂xφðxÞ and ∂xφ̄ðxÞ
are proportional to densities near these minima.
We are interested in the dilute limit of a small (but finite)

density of electrons, for which v1 ≈ v2 ¼ v. When
approaching the saturation QCP (zero density), the velocity
v vanishes as Q1 −Q2. The momentum cutoff around the
Fermi points also decreases proportional to the density.
As the renormalized coupling constants continuously
approach their value at the QCP, we argue that by
approaching saturation, g12 and g1̄ 2̄ continuously approach
zero as they are irrelevant at the QCP for precisely the same
reason as for the single-minimum case: the Pauli exclusion
principle forbids interactions like ψ†

xψ
†
xψxψx so the

most relevant interactions must have two derivatives
ψ†
x∂xψ

†
xψx∂xψx, making them irrelevant perturbations to

the free-fermion fixed point (see Ref. [6]). Moreover, the
spatial derivative that appears in the fermionic currents
iðψ†

x∂xψx − ∂xψ
†
xψxÞ makes the coefficient of ΠðxÞΠ̄ðxÞ

irrelevant (the terms proportional to Π2 and Π̄2 are,
however, relevant as the fermionic anticommutation
relations yield relevant terms of the type ∂xψ

†∂xψ
for the same species). In addition, inversion symmetry
requires g12̄ ¼ g1̄2.
The general form of the Hamiltonian in the dilute limit is

then given by

(b)

(a)

FIG. 1 (color online). The dispersion of Eq. (2) with two
minima at �Q. The Fermi points are at �Qi, i ¼ 1; 2 with
corresponding Fermi velocities vi.
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H¼
�
1

2π

�
2
Z

dxf2πv½ð∂xφÞ2þð∂xφ̄Þ2�þ 2π3vðΠ2þ Π̄2Þ

þ gπð∂xφΠ̄− ∂xφ̄ΠÞþ g0∂xφ∂xφ̄

þ 2gc cos ½2ðφ̄−φÞ�g; ð7Þ

where g≡ g11̄ − g22̄, g
0 ≡ g11̄ þ 2g12̄ þ g22̄, and the explicit

dependence of the fields on x is suppressed. Since we have
used the limiting values of the coupling constants in the
limit of vanishing density, it is important to bear in mind
that our results are valid only over large length scales in
comparison with the interparticle spacing (inverse of the
cutoff for linearized dispersion).
If the term proportional to gc becomes relevant, it can

open a gap and destroy criticality. However, we have a
quantum liquid if this term is irrelevant (to be checked
a posteriori). If g0 also flows to zero for a certain range of
microscopic parameters, we can rewrite the Hamiltonian as

H ¼ u
2π

Z
dx

X
σ¼�

�
1

K
ð∂xφσÞ2 þ KðπΠσÞ2

�
; ð8Þ

where the new fields are related to the old ones through the
following anyonic gauge transformation:

φþ≡φ; Πþ≡Π−
α

π2
∂xφ̄; φ−≡ φ̄; Π−≡Π̄þ α

π2
∂xφ

with α≡ ðg=4vÞ, K ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðα=πÞ2

p
, and u ¼ v=K [46].

Note that the momentum of one species is shifted by a
gauge field times the density of the other species. This is
equivalent to attaching a flux to each particle in such a way
that the new “composite” particles obey anyonic commu-
tation relations [19]: α represents the mutual statistical
phase for exchanging the two types of particles. In other
words, the anyonic nature of the new quasiparticles
corresponds to a generalized J-W transformation (discussed
below) and can be inferred from the commutation relations
given below Eq. (4) [19]. Because the scaling dimension of
cos ½2ðφ̄ − φÞ� is 2K for the anyonic liquid, gc indeed flows
to zero.
In fact, the Hamiltonian (8) is a direct generalization of

the Shastry-Schulz model of noninteracting anyons [19].
Just like in the Shastry-Schulz model, the two anyonic
species are completely decoupled (there is a unique
statistics of quasiparticles for which the theory breaks into
two decoupled sectors). The Shastry-Schulz model, how-
ever, corresponds to the special case of K ¼ 1, indicating
no intraspecies interactions. The α-dependent K in our
model results in a continuous interpolation from free
bosons (α → π, H ¼ ðπv=2Þ R dx

P
σΠ2

σ) to free fermions
(α ¼ 0, K ¼ 1).
The key to realizing the anyonic liquid (8), however, is a

vanishing renormalized g0 at the fixed point. Although it is
difficult to express g0 in terms of microscopic parameters,

an exact two-magnon calculation allows us to determine the
microscopic parameters for which g0 ¼ 0. We use the
analogy with free fermions [a Luttinger liquid (LL) with
Luttinger parameter K ¼ 1]. For such a noninteracting LL,
the two-particle state c†k1c

†
k2
j0i is an exact eigenstate of the

Hamiltonian. As soon as K moves away from unity, this
state scatters into other two-particle states and will not
remain an eigenstate. Thus, if the effective Hamiltonian has
the general Luttinger-liquid form and c†k1c

†
k2
j0i is an exact

eigenstate of the microscopic Hamiltonian, the Luttinger
parameter must be equal to unity (free-fermion fixed point).
Similarly, we require that a two-anyon state be an exact
eigenstate of the Hamiltonian (1).
Going back to Eq. (1), we perform a generalized J-W

transformation to anyons with statistical phase ϕ and

annihilation operator ax on site x: S−x ¼ axe
−iϕ

P
y<x

ny

and Szx ¼ nx − 1
2
with nx ¼ a†xax. The anyonic statistics

of these particles can be observed in the relationship
a†xa

†
y ¼ e−iϕa†ya

†
x for x < y (see Ref. [43] for the physical

interpretation of anyons in terms of spins). In the dilute
limit, the possible momenta are �Q. We need to find a
relationship between the microscopic parameters so that the
two-particle state a†Qa

†
Q̄j0i, with Q̄≡ −Q, where aQ is the

Fourier transform of ax defined above at momentum Q, is
an exact eigenstate of Eq. (1). The Hamiltonian has
the same form as Eqs. (2) and (3) in terms of anyonic
operators (with c replaced by a), except for the correlated
hopping term (the term in HI proportional J2), which now
reads ðJ2=2Þ

P
xnxþ1½ðeiϕ − 1Þa†xajþ2 þ ðe−iϕ − 1Þa†xþ2ax�.

Requiring Ha†Qa
†
Q̄j0i ¼ ϵa†Qa

†
Q̄j0i leads to

Δ1 ¼ cosðQÞ þ sinðQÞ
2

½tanðQÞ þ tan ðQþ ϕ=2Þ�; ð9Þ

Δ2 ¼ cos ð2QÞ þ sin ð2QÞ tan ð2Qþ ϕ=2Þ ð10Þ

with the energy given by ϵ ¼ −2ðΔ1J1 þ Δ2J2Þþ
2J1 cosðQÞ þ 2J2 cos ð2QÞ. Note that eliminating ϕ
between Eqs. (9) and (10) gives a relationship between
the microscopic parameters Δ1 and Δ2 for a given J1=J2
(cosQ ¼ −J1=4J2). This relationship is achieved by tuning
only one microscopic parameter and it allows the system to
realize an anyonic liquid with an emergent statistical angle
ϕ determined by the above equations. Because there is only
one anyon of each species in a†Qa

†
Q̄j0i, the intraspecies

interactions characterized by the parameter K play no role
in the above argument.
If the effective theory of the system is given by Eq. (7),

the above values of Δ1 and Δ2 guarantee the absence of
scattering between the two anyonic species. The effective
Hamiltonian must then reduce to Eq. (8) with α ¼ π − ϕ. In
other words, we have a family of Hamiltonians charac-
terized by two parameters Q and ϕ, which can potentially
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flow to the anyonic-liquid fixed point (8). However, the
formation of low-energy bound states may lead to either a
first-order phase transition from the saturated state (the
number of particles changes discontinuously at the satu-
ration field) or a continuous transition into a state with
dominant nematic (BEC of pairs) or higher-order multi-
polar fluctuations. As discussed in the Supplemental
Material [45], by using exact two-magnon calculations
[47], we found the range of parameters that give rise to low-
energy bound states, destabilizing the anyonic liquid, and
obtained the phase diagram of Fig. 2.
Returning to the anyonic liquid, we now present ana-

lytical predictions for different correlation functions, which
are numerically verified with the DMRG method. For the
fermionic Green’s function GðxÞ ¼ hc†ycxþyi, we find

GðxÞ ∝ ½sin ðQ1xþ ω1Þ − sin ðQ2xþ ω2Þ�x−1=
ffiffiffiffiffiffiffi
1−λ2

p
;

ð11Þ
for xρ0 ≫ 1, with λ ¼ α=π in the dilute limit. In general, the
ordering vectors change at finite densities (because of the
string operator that relates fermions to anyons), but the
change is negligible in the limit of small density considered
here [19]. Moreover, the ordering vectors Qi have an
uncertainty of order 1=L in a finite system of length L.
We therefore compare the above prediction with the
numerical results by fitting the numerically computed
correlation function to expression (11), with the ordering
vectors, the overall coefficient, and the exponent as fitting
parameters (using the fact that the exponents are relatively
close to 1 we neglect the phase shifts in the oscillatory
prefactor [45] in fitting the data). An exponent close to
−ð1=

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

p
Þ and ordering vectors close to the computed

(for the given density of fermions) Q1 and Q2 would
corroborate our analytical prediction for an anyonic liquid.
We performed the DMRG calculations for a chain of

length L ¼ 400 with periodic boundary conditions (imple-
mented by constructing two parallel chains of length L=2
and connecting the endpoints [48]). We compared the
results with a calculation for L ¼ 200 and chose the range
of xwhere the two data sets overlap. Excellent convergence
was obtained by keeping 1000 states in the DMRG

iterations. As seen in Fig. 3(a), the exponent of the
correlation function differs from δ ¼ 1 (free fermion fixed
point) and it is consistent with the exponents of an anyonic
liquid. The ordering momenta are also very close to our
analytical predictions (the agreement cannot be perfect
because of the finite value of the density ρ0 ¼ 0.05).
The statistical angle also changes the asymptotic behav-

ior of the two-point spin-spin correlators. This angle can
then be obtained by measuring the k dependence of the
transverse magnetic susceptibility χxx ¼ χyy, which is
determined by the Fourier transform of the correlator
hSþx S−0 i. At low densities, we can neglect the average
density ρ0 in

P
y<xny ¼

R
x
−∞ dy½ρ0 þ

P
a(jaðyÞ þ j̄aðyÞ)�

and write S−x ∼ cxe−i½φðxÞþφ̄ðxÞ�. By using Eqs. (4) and (8),
we find that the four terms in hSþx S−0 i fall into two
categories, respectively decaying to leading order as

x−ð1=2Þ½
ffiffiffiffiffiffiffi
1−λ2

p
þð1�λÞ2=

ffiffiffiffiffiffiffi
1−λ2

p
� (where λ ¼ ðα=πÞ), with the lead-

ing dilute-limit behavior given by

hSþx S−0 i ∝ sin ðQ1xþ ωÞx−ð1=2Þ½
ffiffiffiffiffiffiffi
1−λ2

p
þð1−λÞ2=

ffiffiffiffiffiffiffi
1−λ2

p
�; ð12Þ

for xρ0 ≫ 1 (ω is a phase shift). We also checked the above
expression with DMRG computations. The bosonic corre-
lators have a stronger finite-size dependence so in fitting

the data we replaced x in x−ð1=2Þ½
ffiffiffiffiffiffiffi
1−λ2

p
þð1−λÞ2=

ffiffiffiffiffiffiffi
1−λ2

p
� with

its finite-size counterpart ~x ¼ ðL=πÞ sin (πðx=LÞ). The
agreement is excellent as shown in Fig. 3(b). The anyonic
fixed point can be detected by comparing the above
exponent with the exponent of the correlator that deter-
mines the longitudinal susceptibility χzz: the oscillatory

FIG. 2 (color online). The phase diagram of the Hamiltonian (1)
with ðJ1=4J2Þ ¼ − cosðQÞ and other coupling constants given by
Eqs. (9) and (10). The phases are, respectively, denoted by AL
(anyonic liquid) and MBS (magnon bound state).

(a)

(b)

FIG. 3 (color online). (a) The fermionic Green’s function for
ϕ=π ¼ 0.615 and Q=π ¼ 0.2 at density ρ0 ¼ 0.05. The black
circles (blue line) represent(s) the numerical results (fit). Fitting to
Eq. (11) gives Q1=π ¼ 0.16, Q2=π ¼ 0.21, and an exponent
0.108 in excellent agreement with analytical predictions
Q1=π ¼ 0.17, Q2=π ¼ 0.22, and an exponent 0.108. (b) The
spin-spin correlation function for the same parameter. Fitting to
Eq. (12) gives an exponent 0.70 in good agreement with the
analytical prediction 0.67.
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[k ¼ �ðQ2 −Q1Þ] components of hSzxSz0i decay as

x−ð1=2KÞ ¼ x−ð1=2Þ
ffiffiffiffiffiffiffi
1−λ2

p
for xρ0 ≫ 1 [49]. Finally, we note

that disorder is a relevant perturbation for magnetic
saturation QCP’s [50]. However, the exponents that we
are predicting for the two-spin correlators can still be
measured if the characteristic length scale associated with
the disorder is much longer than the average interparticle
distance 1=ρ0.
In summary, by studying the effects of strong magnetic

frustration in nearly saturated spin chains, we extended the
classification of the saturation QCPs from the standard
paradigm of simple free fermionic (bosonic) theories in d ¼
1 (d > 1) [6] to an exotic continuous line of anyonic
liquids,. These liquids are characterized by two species of
anyonic quasiparticles with vanishing interspecies inter-
actions. The emergent statistical phase of the quasiparicles
interpolates continuously between bosons and fermions.
While envisioned in the field-theory literature, anyonic
liquids had thus far remained as an abstract theoretical
construction. Our results provide natural realizations of
one-dimensional anyonic liquids in a simple and exper-
imentally relevant model, opening a promising direction in
the search for anyons in frustrated magnets. As only one
exchange parameter needs to be tuned in order to realize
our anyonic liquids (apart from the magnetic field, which
can be easily brought to the vicinity of the critical point),
physical or chemical pressure could drive generic highly
frustrated one-dimensional magnetic materials into the
anyonic-liquid phase. Relationships between the transverse
and longitudinal magnetic susceptibilities serve as exper-
imental signatures of this exotic phase. The fate of higher-
dimensional systems realized by coupling these anyonic
wires [51–54] poses an interesting challenge for future
investigations. For certain anyonic phases [55], novel two-
dimensional topological phases might emerge (see
Refs. [56,57] for such constructions).
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