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What distinguishes trivial superfluids from topological superfluids in interacting many-body systems
where the number of particles is conserved? Building on a class of integrable pairing Hamiltonians, we
present a number-conserving, interacting variation of the Kitaev model, the Richardson-Gaudin-Kitaev
chain, that remains exactly solvable for periodic and antiperiodic boundary conditions. Our model allows
us to identify fermion parity switches that distinctively characterize topological superconductivity (fermion
superfluidity) in generic interacting many-body systems. Although the Majorana zero modes in this model
have only a power-law confinement, we may still define many-body Majorana operators by tuning the flux
to a fermion parity switch. We derive a closed-form expression for an interacting topological invariant and
show that the transition away from the topological phase is of third order.
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In recent years, the physics of Majorana zero-energy
modes has become a key subfield of condensed matter
physics [1-4]. On the theory side, a central result is the bulk-
boundary correspondence [5] that associates Majorana zero
modes to the boundary of (or defects in) a topologically
nontrivial superconductor, with the Kitaev chain as a
prototypical example [6]. The mathematical formalism
underlying this correspondence relies on the symmetries
and topological invariants of the Bogoliubov—de Gennes
equation [7], a mean-field description of the superconduct-
ing state in which the conservation of the number of
fermions (a continuous symmetry) is broken down to a
discrete symmetry, the conservation of fermion-number
parity. Majorana zero modes are directly linked to the
spontaneous breaking of this residual discrete symmetry [8].

As the experimental side of Majorana physics continues
to develop [9-14], it becomes crucial to unveil how much of
the mean-field picture survives beyond its natural limits.
This has motivated recent studies [15-21], with the focus on
the anomalous 2®, = /e flux periodicity of the Josephson
effect—the hallmark of a topological superconductor [6].

A main thrust of this Letter is the characterization of
interacting many-body, number-conserving, topological
superconductors, or superfluids, leading to a subsequent
analysis on the meaning of Majorana zero modes beyond
mean field. The theoretical study of any interacting
quantum system is hampered by the exponential growth
of the Hilbert space with the number of particles. An
additional complication of superconducting systems is the
lack of simple principles to guide the design of particle-
number conserving models, in which the phase of the order
parameter is not a good quantum number. To overcome
both obstacles, we have constructed an exactly solvable,
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number-conserving variation of the Kitaev chain. Because
our model belongs to a class of integrable pairing models
[22—-24] based on the s-wave reduced BCS Hamiltonian
first solved by Richardson [25], and on a generalization
of the Gaudin magnet [26], we will refer to it as the
Richardson-Gaudin-Kitaev (RGK) chain.

The RGK model is integrable for periodic and antiperi-
odic boundary conditions. It allows us to obtain precise
answers for the characterization problem posed here,
including the very existence of a topologically nontrivial
phase, in an interacting number-conserving system, the
order of the phase transition into the trivial phase, the
definition of a topological invariant beyond mean-field, and
the emergence of many-body Majorana zero modes.

Richardson-Gaudin-Kitaev chain.— Our model is
defined by the Hamiltonian

Hyck = E ekéiék—SG E ”k”k’ezeike—k’ek’ (1)
kes? kKes!,

in terms of fermion creation operators é,t, with momentum
k-dependent single-particle spectrum &, = —2¢; cosk —
2t, cos 2k and interaction strength G > 0. The interaction
is modulated by the potential

me = sin(k/2)y/1y + dnsc0s2(k/2), 2)

which displays the odd-parity behavior 7, = —5_; charac-
teristic of p-wave superconductivity. The pair potential is
related to the single-particle spectrum by 4177 = g + 21,
t, =t +t,. This relation is the key to achieve exact
solvability, nonetheless, its functional form has been
chosen so that it realizes a new model that is physically
sound in both momentum and real spaces.
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Inreal space, we define ¢; = L‘l/zzkesfeijkék fora chain
of length L, measured in units of the lattice constant. We
take ¢p-dependent boundary conditions c;,; = ¢%/?c;. In a
ring geometry, periodic boundary conditions (¢ = 0)
correspond to enclosed flux ® = 0 and antiperiodic boundary
conditions (¢ = 2x) correspond to & = ®,. The resulting
sets of allowed momenta S? are S = S, ®S?_®{0, —x}
and S =S @S;", with Soi =L" 1{:|:271 +4z, .
+(zL - 27)} and 8§ = L~ Y+n, £3x, ..., £(zL - 7‘[)}
The RGK Hamiltonian in real space reads

L 2
Hygk = — Z Z (t,cjciﬂ +Hec.) - 2GI;I¢, (3)

i=1 r=1

L
I,=20) mee =Y nli-jec;.  (4)

kes?, >]

There are at least two cases where the pairing function
n(m) can be determined in closed form by Fourier trans-
formation of Eq. (2). For t;, =0 and 1, #0, n(m) =
/10,15 i.e., we have nearest-neighbor pairing only. For
t; # 0 and t, = 0 we obtain

(-1)"8\/t; m (5)

gyt for L — oo,
Vs —4m

n(m) =

so a long-range pairing interaction with a slow 1/m decay
with distance m = i — j. In general, n(m) is a monotonic,
decaying function of m.

This long-range pairing interaction is the difference with
the original Kitaev model [6] that allows for the exact
solution beyond the mean-field approximation. As we shall
see in a moment, the long-range coupling still allows for a
topologically nontrivial phase. It may also be physically
relevant for chains of magnetic nanoparticles on a super-
conducting substrate [27,28], which have recently been
shown to support topologically protected Majorana zero
modes in the presence of a long-range coupling [29].

Mean-field approximation.—Before we work out the
exact solution of the RGK chain, we would like to establish
first whether it displays a nontrivial topological phase in the
mean-field approximation.

We set t, =0 for simplicity and take the pairing
interaction Eq. (5). The mean-field approximation to the
RGK chain is obtained from the substitution 2GI'I —
A*I + AI', with gap function A =2G(I,) = ¢’|A|. We
define Majorana fermion operators a; = e~ %/?¢; + €%/ zclT,
ib; = e7%2¢; — ¢%/2¢]. The mean-field Hamiltonian is

P‘

—1

it
Hmf - EIZ(biaiJrl a; l+1 ZAZ J b CZ +a b; )
= l>]
(6)
where A;_; = [A[n(i — j), and displays a topological phase

characterized by power-law Majorana edge modes and
an associated 4z-periodic Josephson effect. For clarity of

presentation, let us compute approximate edge modes to
leading order in 6, = A, /(A + t;). The Majorana mode
locahzed at the left end of the chain is a; = a;+
Z Z ( 52)L /a], so that i[Hmf,le] = AL—lbL+
(9(52) We see that A, + ¢, controls the localization of the
Majorana modes, while A;_; controls the vanishing of the
commutator with the Hamiltonian.

Because of the long-range pairing interaction Eq. (5), the
wave function of the Majorana modes decays algebraically
rather than exponentially in the bulk, and their energy
approaches zero as a power law in 1/L, similarly to what
has been found in other mean-field models based on the
Kitaev chain with long-range coupling [29-31].

Exact solution.—To show that the RGK chain is exactly
solvable, we rewrite it in the algebraic form

HRGK == 8H¢ + 5¢’0(808860 + 8_,[6‘1”6_”)

— 41,8 4 C,, (7)
H, = Z mS; =G Z M Sy S (8)
keS?, kkesy,

with C{/) = 2l25¢0, S = (Cka+ C kC k= ]) and S]J(r =
c,’(cI  for each pair (k —k) of pairing-active momenta.

These operators satisfy the algebra of SU(2). Hence, S* =
Z 3 7| —
Zke‘% S} defines a conserved quantity, [H,, S°] = 0.

The Hamiltonian H j, belongs to the hyperbolic family of
exactly solvable pairing Hamiltonians [24,32], whose best
known representative is the chiral p-wave superfluid
[33-37]. The rational family includes s-wave pairing and
has been used in the study of the BCS-BEC crossover
phenomenon [38]. Eigenstates for 2M + N, fermions are

|Ppr) = H ( Z 5 ikE ¢je ik> ). 9)

a=1 \xes?, Me = Fa

The state |v) with N, unpaired fermions satisfies S; [v) = 0
for all k. Moreover, S;|v) = —s;|v), with s, = 0if the level
k is singly occupied or s; = 1/2 if it is empty. The
corresponding energy levels are Ey, = (v|H,lv)+
S°M | E,, with spectral parameters E, determined by the
Richardson-Gaudin equations

1 0,
Z ZikEa_ZEﬁ—Ea:E_:’ (10)

vest, Tk fa)

where 0 = 1/2G - ZkeSZ’ s+ M—1.

In the case of periodic boundary conditions (¢ = 0) the
two momenta k = 0, —x are not affected by the interactions
and need to be included separately. The eigenvectors then
are |Uy) = |non_,) ® |®y,), where ng, n_, € {0, 1} and
the total number of fermions is N = 2M + N, + ng + n_,.

The Richardson-Gaudin equations [Eq. (10)] become
singular when two or more E,’s approach the same
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single-particle energy 77% and also around E, =0. At
specific values of the interaction strength G

2
L—2(2M+NU) +2(n—|— 1 —54),0)

¢ 2 ¢

there are n solutions E,, 1 < n < M, that vanish identically
[34,36]. In particular, at n = M, where Eq. (9) becomes a
pair condensate, GZ is precisely the Moore-Read coupling.
And, at n = 1 where Q¢ =0, G‘f = @G, is the Read-Green
coupling, associated with the nonanalytic behavior of
observables in the thermodynamic limit [34,36].

The numerical solution of Eq. (10) is particularly simple
forvalues of G > G({', when all E,’s are real and negative, and
for G = Gf when n of the E,’s vanish while M — n are real
and negative. For other values of G we perform special
variable transformations that remove the singularities in
Eq. (10), and that is crucial to solve large system sizes.
We carried out computations with systems of up to L =~ 2000
sites at quarter filling. Without the integrability condition, this
would have required diagonalization of a Hamiltonian matrix
with the unwieldy dimension 5 x 10?42, The exact solvability
reduces the complexity of the problem to the solution of the
M =250 nonlinear coupled equations [Eq. (10)].

We were also able to perform extrapolations to the
thermodynamic limit N, L — oo at finite density p =
N/L and rescaled interaction strength g = GL/2. In that
limit, Eq. (10) relate to the mean-field gap and number
equations for H [34]

2 T2 1 z
—”:/ T g, p:—/ vdk,  (12)
g o Ex 7 Jo

2 2 2
Ur 2A2 o 1 o —2u
Ev=1/(Z-pu) +npPa2 =3
¢ \/(2 ”) T T2 aE, (13)

with quasienergies E; and occupation probabilities v7.

Phase diagram and topological transition.—To establish
the quantum phase diagram of the RGK chain, one needs
the ground state energy &(p,g) of Hggk. Depending
on the boundary condition and fermion-number parity,
one has to consider either N, =0 or 1. For periodic
boundary conditions, since the levels k = 0, —z decouple
from the rest, N, = 0 for both even and odd N. If N is odd,
the unpaired particle occupies the k =0 level without
blocking an active level. For antiperiodic boundary con-
ditions the ground state has N, = 0 for N even, while for N
odd it has N, =1 with blocked level k,. The resulting
ground state energy is given by

M
5?(1\’) =38 ZEa -4t M+ Jyo+ 5ND,1(477i0 —2t,),
a=1
(14)

where J; 0 = 640(€00,,1 + €z, _1). In the thermody-
namic limit the energy density reduces to

4 4 [«
e Egggogg/L = —2t+p—§A2+;A mvidk.  (15)

The resulting phase diagram is shown in Fig. 1. The RGK
chain is gapped for all g > 0, except for the Read-Green
coupling g. = szlL /2 where it becomes critical in the
thermodynamic limit (without any dependence on the choice
of boundary conditions). This critical line defines the phase
boundary separating weak (topological) from strong (trivial)
pairing phases, and thus is a line of nonanalyticities. At g, a
cusp develops in the second derivative of ¢, that leads to a
singular discontinuous behavior of the third-order derivative.
Hence, the transition from a weakly paired to a strongly
paired superconductor is of third order, just like for the
two-dimensional chiral p-wave superconductor [34,36].

Open circles in Fig. 1 correspond to the second-order
derivative of the exact e, for the antiperiodic RGK chain
with L = 2048, N =512, and t; = 1, 1, = 0, obtained by
solving Eq. (10) for some selected pairing strength values,
and illustrate how close to the thermodynamic limit these
system sizes are. We will demonstrate shortly that the
weak-pairing phase of the RGK chain is indeed topologi-
cally nontrivial.

Fermion parity switches.—We next introduce a quanti-
tative criterion to establish the emergence of topological
superconductivity in particle-number conserving, many-
body systems. The criterion exploits the behavior of the
ground state energy of a system of N, and N & 1 particles,
for both periodic and antiperiodic boundary conditions. The
emergence of topological order in a superconducting wire,
closed in a ring and described in mean field, is associated

-0.06 T T T T T T T T T T

-0.07F o8

r 06 P =
-0.08 " de, 04 K

[ (dg)®
009

0.0

deq gqo[ o

(dg> i 0"%.7 18 19 20 21 22 23

011} . 05

P Topolpg'i"cal

- / Trivial
-0.13 =5 4

FIG. 1. Third-order phase transition between the topological
(weak-pairing) and trivial (strong-pairing) superconducting
phases. The continuous line denotes the second order derivative
of the ground-state energy density e, evaluated in the thermo-
dynamic limit. Circles are the exact solution for L = 2048,
N =512, and antiperiodic boundary conditions. Top inset:
Discontinuity in the third-order derivative. Bottom inset:
Quantum phase diagram in the (p, g)-plane. Dashed and full
lines represent, respectively, the Moore-Read (g3} = 1 — p) and
Read-Green (g-' = 1 — 2p) boundaries.
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with switches in the ground-state fermion parity P(¢) upon
increasing the enclosed flux ® = (¢/27) x @, [6,39-44].
Any spin-active superconductor, topologically trivial or not,
may experience a crossing of the ground state energies for
even and odd number of electrons [45-48]. Regardless of
spin, what matters is the number of crossings Ny between
P =0=¢ and & = ), ¢ = 2x. The superconductor is
topologically nontrivial if Ny is odd, otherwise it is trivial.

In the many-body, number conserving, case we need to
identify the relevant parity switches signaling the emer-
gence of a topological superconducting phase. Our exact
solution gives us access to P(¢) only at ¢ = 0 and ¢p = 27,
but this is sufficient to determine whether Ny is even or
odd. Notice that odd Ny means that the flux ® should be
advanced by 2®j—rather than $y—in order to return to the
initial ground state, which is the essence of the 4z-periodic
Josephson effect [6,49].

To identify the fermion parity switches we calculate the
ground state energy Eg'(N ) for a given number N of
fermions in the chain of length L, with periodic (¢ = 0)
or antiperiodic (¢ = 2x) boundary conditions, and compare
EX(p) =LENN +1) +1EJIN=1) and  E5(p) =
53’(N ), where we assumed N even. The difference (inverse
compressibility) y(¢p) = E39(g) — E*"(¢p)  determines
Py(¢p) = signy(¢), so it has the opposite sign at ¢ =0
and ¢ = 2z in the topologically nontrivial phase. We also
find that Pyeeven(®) = —Pyeoda(¢) in the topologically
nontrivial phase. The results, shown in Fig. 2, unambig-
uously demonstrate the topologically nontrivial nature of
the superconductor for g < g.—both in a finite system and

T T T Thermodyn

O Antiperiodic
+ Periodic

Trivial

FIG. 2 (color online). Ground state energies for the RGK chain
(in units of #; =1, for 1, =0) for even (N =2M) and odd
(N = 2M =+ 1) number of fermions, and with periodic (¢ = 0) or
antiperiodic (¢p = 27) boundary conditions. The main plot shows
the odd-even difference as a function of the interaction strength g
for a finite system (data points, for N = 512, L = 2048) and in
the thermodynamic limit (continuous lines). The topologically
nontrivial state is entered for g < g. = 2. The insets show the
even and odd energies themselves, for the finite system (lower
two insets) and in the thermodynamic limit (upper two insets),
illustrating the fermion parity switches Py (¢).

in the thermodynamic limit, and without relying on any
mean-field approximation.

The ground state of the odd (2M =+ 1) system strongly
depends on the boundary conditions. For periodic boundary
conditions the unpaired particle always occupies the ko = 0
level, while for the antiperiodic case it starts blocking the
Fermi momentum kr = k, at g = 0, continuously decreas-
ing its modulus with increasing g, up to ky = z/L at gy ~
1.1936 (p = 1/4), corresponding to u = A? in the thermo-
dynamic limit. In that limit y(¢) has a particularly simple
form: y(0) = —8u, and y(27) = 8]u| for g > g,.

Topological invariant and zero modes.—In addition to
the parity switches, one would like to have an independent
way of signaling a topological phase transition. The
occupation number N_, of the k=0 single-particle
state is a topological invariant [34,50], being the one-
dimensional analogue of the winding number in two space
dimensions [51,52]. By combining the integrals of motion
[24,34] with the Hellmann-Feynman theorem we find

1 M n  OE
Nie=z—si—dsip?y —F "% (16
k D) Sk Sy ; (7]% _ Ea)z ay ( )
G W(G)

G.G
=2 W(G) =t
" Z3W(G) - 26, (©)

~26-G.° (17)
The mapping W satisfies W(W(G)) = G, with fixed point
W(G,.) = G,, typical of self-dual transformations. In the
thermodynamic limit, lim;_ N —y = O[G. — G| with
O[x] the unit step function, thus signaling the topological
transition at G = G, as can be confirmed numerically.

It is known for the mean-field case that it is possible to
construct exact zero-energy modes by tuning the flux to a
fermion parity switch [53]. We may generalize this concept
to our many-body system, and thus give meaning to the
notion of many-body Majorana modes. By varying the
boundary conditions in the topologically nontrivial phase
the “ground state” energies £399(¢) and £§*"(¢h) cross at
some critical ¢*. (They must cross, because their order is
inverted at ¢ = 0 and ¢ = 2x.) At this value of ¢ = ¢* one
can identify Majorana zero modes as follows. Define the
normalized ground states |Wgen) = |W}), |WSdd) =
(WY1 4+ |Wd=1))/v/2, with the transition operator
T = |Tgven)(Wg¥|. Clearly, 72 =0, and {T,77} = Py,
with Py = |Wgven) (Teven| 4 |Wgdd) (U9dd| the projector onto
the ground-state subspace. Then, the corresponding
Majorana operators are: [ = T+177, ir, = T-177,
{I'},T»} =0, modes that have an operational meaning
for open quantum systems. In the isolated chain with open
boundaries, we would expect the equivalent of these modes
to be localized at the edges due to the bulk energy gap. It
would be interesting to check this numerically.

In conclusion, we have constructed a variation of the
Kitaev Hamiltonian that is both number conserving and
interacting, but still exactly solvable. This allowed
us to identify the fermion parity switches needed for
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characterizing topological superconductivity in generic
interacting many-body systems, integrable or not, and to
analyze the meaning of many-body Majorana modes. In turn,
this implies that the fractional, i.e., the lack of a & = ®,-
periodic, Josephson effect can indeed serve as an exper-
imental probe in these systems. We have shown that our
Richardson-Gaudin-Kitaev model shares the features of the
mean-field Kitaev model that have made it a paradigm of
topological superconductivity. There is one difference, the
long-range nature of the pairing interaction, but in view of
recent experimental developments [28,29], this may be a
welcome feature of the model rather than a drawback.
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by the Netherlands Organization for Scientific Research
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