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At the interface of an s-wave superconductor and a three-dimensional topological insulator, Majorana
zero modes and Majorana helical states have been proposed to exist respectively around magnetic vortices
and geometrical edges. Here we first show that randomly distributed magnetic impurities at such an
interface will induce bound states that broaden into impurity bands inside (but near the edges of) the
superconducting gap, which remains open unless the impurity concentration is too high. Next we find that
an increase in the superconducting gap suppresses both the oscillation magnitude and the period of the
Ruderman-Kittel-Kasuya-Yosida interaction between two magnetic impurities. Within a mean-field
approximation, the ferromagnetic Curie temperature is found to be essentially independent of the
superconducting gap, an intriguing phenomenon due to a compensation effect between the short-range
ferromagnetic and long-range antiferromagnetic interactions. The existence of robust superconductivity
and persistent ferromagnetism at the interface allows realization of a novel topological phase transition
from a nonchiral to a chiral superconducting state at sufficiently low temperatures, providing a new
platform for topological quantum computation.
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Introduction.—Non-Abelian fermions have attracted
much attention because of their potential applications in
topological quantum computation (TQC) [1,2]. One
common physical entity obeying non-Abelian braiding
statistics is the zero-energy Majorana fermion [3], which
is its own antiparticle described by γ ¼ γ†. In condensed
matter physics, a chiral topological superconductor (TSC)
[4] is characterized by the existence of two types ofMajorana
fermions, chiralMajorana edgemodes and a singleMajorana
zero mode surrounding a magnetic vortex; the latter can
be manipulated for realization of TQC [5–8]. The simplest
chiral TSC is a spinless px þ ipy superconductor (SC) or
superfluid [9]; however, it is difficult to quench the spin
degrees of freedom in order to realize spinless SCs.
Recently, it was proposed that the proximity-induced

superconductivity on the surface of a topological insulator
(TI) deposited on a conventional s-wave SC possesses a
px þ ipy pairing feature [10]. The nonchiral nature of such
a spinful SC is characterized by the existence of Majorana
helical edge states and a pair of Majorana zero modes
surrounding a magnetic vortex. To convert such a TSC into
a chiral one, time reversal symmetry (TRS) must be broken.
Two schemes have been proposed to break TRS, both
relying on the effect of a Zeeman field. The first consists of
a SC-TI-magnet junction [10]; in the second scheme, the TI
can be further replaced by a traditional semiconducting
thin film with strong Rashba spin-orbit coupling (SOC)
[11,12]. These intriguing proposals have motivated exten-
sive experimental efforts for the detection of Majorana

fermions [13–15], but so far definitive proof of their
existence remains controversial. Here we note that both
schemes face the inherent challenge that the proximity-
induced Zeeman field decays rapidly through the TI or
semiconductor thin film.
In this Letter, we introduce an alternative and concep-

tually new scheme to realize a chiral TSC within a simpler
structure, achieved by randomly doping magnetic impu-
rities directly at a TI-SC interface (see Fig. 1). We first
show that these magnetic impurities will induce bound
states that broaden into impurity bands inside (but near the
edges of) the superconducting gap, which remains open
unless the impurity concentration is too high. Next we find
that an increase in the superconducting gap suppresses both
the oscillation magnitude and the period of the Ruderman-
Kittel-Kasuya-Yosida (RKKY) interaction between two
magnetic impurities mediated by BCS quasiparticles.
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FIG. 1 (color online). (a) Schematic of randomly distributed
magnetic impurities at the interface of a 3D TI and a super-
conductor. (b) Side view of the TI-SC heterostructure exhibiting
the positions of the magnetic impurities.

PRL 113, 266806 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

31 DECEMBER 2014

0031-9007=14=113(26)=266806(5) 266806-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.113.266806
http://dx.doi.org/10.1103/PhysRevLett.113.266806
http://dx.doi.org/10.1103/PhysRevLett.113.266806
http://dx.doi.org/10.1103/PhysRevLett.113.266806


The ferromagnetic Curie temperature is found to be
essentially independent of the superconducting gap due
to a compensation effect between the short-range ferro-
magnetic and the long-range antiferromagnetic inter-
actions. The existence of persistent ferromagnetism at
the interface provides a strong and uniform Zeeman field
for the realization of a chiral TSC. In particular, by
investigating the edge states and the corresponding first
Chern number [16], we reveal a topological phase transition
from a nonchiral to a chiral TSC at sufficiently low
temperatures. These findings, in principle, provide a new
and more appealing platform for TQC.
Theoretical model.—The surface states of strong TIs are

described by the time reversal invariant Hamiltonian

H0 ¼
P

kψ
†
kðνF~σ · ~k − μÞψk. Here ψ†

k ¼ ðc†k↑; c†k↓Þ, ~σ ¼
ðσx; σyÞ are the Pauli spin matrices, μ is the chemical
potential, and νF is Fermi velocity, given by 4.08 eV Å for
Bi2Se3 [17] and 3.70 eV Å for Sb2Te3 [18]. By depositing a
TI on the surface of an s-wave SC, the proximity-induced
pairing Hamiltonian is given as Hp ¼ P

kðΔc†k↑c†−k↓þ
H:c:Þ. Here Δ ¼ Δ0eiϕ is the superconducting gap with
phase ϕ. The states at the TI-SC interface can then be
described by [10]

H0 ¼
1

2

X
k

Ψ†
kHð~kÞΨk;

Hð~kÞ ¼ ðνF~σ · ~k − μÞτz − Δ0ðτx cosϕ − τy sinϕÞ; ð1Þ

where Ψ†
k ¼ ðc†k↑; c†k↓; c−k↓;−c−k↑Þ are four-dimensional

field operators in the Nambu spinor basis. TRS and
particle-hole symmetry are expressed as Θ ¼ iσyK and
Ξ ¼ σyτyK, which satisfy ½Θ;H� ¼ 0 and fΞ;Hg ¼ 0 at Γ
point of the Brillouin zone, respectively, where K is the
complex conjugate operator.
At the microscopic level, we treat the s-d interaction

between a magnetic impurity located at ~Ri and the
electrons at the TI-SC interface to be isotropic, described

by Hi
sd ¼ −Jð~σ · ~SÞδð~r − ~RiÞ, where ~σ ¼ ðσx; σy; σzÞ is the

real electron spin and ~S is the spin of the magnetic impurity.
In Nambu notations, the interaction Hamiltonian can be
rewritten as

Hsd ¼ −
J
2

X
kk0

Ψ†
kð~S · ~σÞτ0Ψk0 ; ð2Þ

where J denotes the s-d exchange coupling strength at the
interface, estimated to be 0.1–0.5 eV [18–20]. Hamiltonian
(2) describes the interaction between the magnetic impu-
rities and BCS quasiparticles, which, together with
Hamiltonian (1), define our theoretical model and the
starting point of this study.
Magnetic impurity-induced states.—In s-wave SCs, a

magnetic impurity will induce quasiparticle bound states
inside the superconducting gap [21,22]. These intragap
states will grow into impurity bands at finite concentrations

of the magnetic impurities and will finally suppress the
superconductivity completely [22]. In this section, we first
study a single magnetic impurity-induced state at the TI-SC
interface using the T-matrix technique [23]. The matrix
form of the retarded Green’s function of Eq. (1) reads

Ĝ−1
0 ðω; ~kÞ ¼ ωþ iδ −Hð~kÞ: ð3Þ

The T matrix is found using the Lippmann-Schwinger
equation

T̂ðωÞ ¼ Û þ ÛĜ0ðω; 0ÞT̂ðωÞ; ð4Þ
where Ĝ0ðω; 0Þ is the Green’s function in real space and

Û ¼ −ðJ=2Þð~S · ~σÞτ0 in our system. The algebra is simplest
for μ ¼ 0 and ϕ ¼ 0, where the Green’s function in real
space is given by the Fourier transformation of Eq. (3). For
~r → 0, the Green’s function takes the following asymptotic
form:

Ĝ0ðω; 0Þ ¼ fðω;Δ0Þðω − Δ0τxÞ; ð5Þ
where fðω;Δ0Þ ¼ ½lnð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

0 − ω2
p

=2WÞ þ χ�v=ð2πν2FÞ, v is
the volume of the lattice primitive cell,W is the band cutoff,
and χ is the Euler-Mascheroni constant. From the algebraic
relations of Eqs. (4) and (5), we find two poles of the T
matrix within jωj < Δ0 which are determined by the
self-consistent equation ω ¼ �½Δ0 þ 2=JSfðω;Δ0Þ�, giv-
ing rise to two impurity bound states inside the super-
conducting gap. By solving the equation, we find that these
bound states are located very close to the superconducting
gap edges. This is because the s-d coupling strength J at
the interface is rather weak compared to the case of bulk
materials. In addition, the low density of states (DOS)
associated with the TI surface state will further weaken the
consequence of the coupling between the magnetic impu-
rity and the TI surface electrons.
Next we will consider the case at finite impurity

concentrations. The Green’s function averaged over ran-
domly distributed magnetic impurities is found from the
Dyson’s equation

Ĝ−1ðω; ~kÞ ¼ Ĝ−1
0 ðω; ~kÞ − Σ̂ðω; ~kÞ; ð6Þ

where Σ̂ is the self-energy given approximately as

Σ̂ðω; ~kÞ ¼ xTðωÞ, x is the concentration of the magnetic
impurities, and TðωÞ is determined by Eq. (4) with the
substitution of Ĝ0ðω; 0Þ by the full Green’s function
Ĝðω; 0Þ. The DOS of the TI-SC interface doped with
a finite concentration of magnetic impurities is given
as ρðωÞ ¼ −ð1=2πÞImfTr½ĜðωÞτ0�g, where the full
Green’s function ĜðωÞ can be obtained self-consistently
from Eq. (6) (see details in the Supplemental Material [24]).
As illustrated in Fig. 2(a), an increase in the concen-

tration of randomly distributed magnetic impurities sup-
presses the superconductivity of the TI-SC interface.
However, the superconducting gap is still robust even
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when the concentration is more than ten percent. The
superconducting gap as a function of the magnetic doping
concentration is also plotted in Fig. 2(b). In order to study
the robustness of the superconductivity at the TI-SC
interface, we define xc as the critical concentration above
which the superconducting gap closes. As shown in
Fig. 2(b), xc is above ten percent for nearly all of the
gap range studied. Such a large critical concentration is
due directly to the weak couplings between the magnetic
impurities and the TI-SC interface electrons.
RKKY interaction and ferromagnetism.—In this section,

we focus on the magnetic properties of the TI-SC interface
doped with randomly distributed magnetic impurities. In
order to study the collective magnetic behaviors of such
systems, we first consider the RKKY interaction between
two magnetic impurities mediated by the BCS quasipar-
ticles. Hamiltonian (1) can be mapped into a two-band
spinless px þ ipy Hamiltonian as

H0 ¼
X
km

ξkmα
†
kmαkm −

1

2
ðmΔeiθkα†kmα

†
−km þ H:c:Þ; ð7Þ

where ξkm ¼ mνFk − μ are the Dirac electron spectra,
m ¼ �1 are the band indices, and αkm ¼ ðmeiθkck↑þ
ck↓Þ=

ffiffiffi
2

p
. Using the same basis set, Hamiltonian (2) can

be rewritten as

Hi
sd ¼ −J

X
mm0kk0

eið ~k0−~kÞ·~Rið~Si · ~σkm;k0m0 Þα†kmαk0m0 ; ð8Þ

where ~σkm;k0m0 are the spin matrices.
In the following, we treat the many-body problem using

perturbation theory. The corrected ground state energy due
to s-d hybridization is E ¼ hΩjTH0Sð∞;−∞ÞjΩi, where
T is the time-order operator and the S matrix is defined as
Sðt; t0Þ ¼ T exp ½−i R t

t0 dt1Ĥsdðt1Þ�. The BCS ground state
is jΩi ¼ Q

kmðukm þ νkmα
†
kmα

†
−kmÞj0i, where ukm and νkm

are determined by the Bogoliubov transformation and j0i is
the vacuum state. The normalization condition hΩjΩi ¼ 1

is ensured by jukmj2 þ jνkmj2 ¼ 1. By expanding the S
matrix to the second order in Hsd and considering only the

loop approximation between two different magnetic impu-
rities i and j, the RKKY interaction can be effectively
written as

Hint
ij ¼ F1ðR; μÞðSziSzj þ Syi S

y
jÞ þ F2ðR; μÞSxi Sxj

þ F3ðR; μÞð~Si × ~SjÞx; ð9Þ
where

FαðR; μÞ ¼ −
J2v2

32π2

Z
kc

0

dkdk0
X
mm0

Dα
km;k0m0 ðRÞ

×
kk0ðEkmEk0m0 − ξkmξk0m0 − Δ2Þ

EkmEk0m0 ðEkm þ Ek0m0 Þ ; ð10Þ

with α ¼ 1, 2, or 3, kc is a large momentum cutoff, and

Ekm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2km þ Δ2

q
is the excitation spectrum of the BCS

quasiparticles, which can be obtained by diagonalizing
Hamiltonian (7). In Eq. (10), we also have

D1ð2Þ
km;k0m0 ðRÞ ¼ J0ðkRÞJ0ðk0RÞ − ðþÞmm0J1ðkRÞJ1ðk0RÞ,

D3
km;k0m0 ðRÞ ¼ m0J0ðkRÞJ1ðk0RÞ þmJ1ðkRÞJ0ðk0RÞ, and

J0;1ðxÞ are the Bessel functions of the first kind. On a
face level, the anisotropic RKKY interaction is qualitatively
similar to that on a TI surface [20] due to the SOC effects in
both systems. However, the presence of the superconduc-
tivity introduces crucial differences, as reflected in Eq. (10)
and discussed in more detail below.
In general, the oscillation period of the RKKY inter-

action is determined by the Fermi wavelength λF ¼ 1=kF.
As shown in Fig. 3(a), an increase in the superconducting
gap Δ suppresses both the oscillation magnitude and the
period of the RKKY interaction, exhibiting a fast decay of
the long-range part of the interaction to be close to zero.
These behaviors stem from two physical aspects. First, the
proximity-induced superconductivity will introduce a gap
of 2Δ at the Fermi level by forming Cooper pairs; because
every excitation of the quasiparticles has to overcome the
superconducting gap, the corresponding RKKY interaction
mediated by the quasiparticles will be suppressed in
magnitude, especially the long-range part. Second, since
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FIG. 2 (color online). (a) DOS as a function of the electron
energy E at different x. (b) Renormalized superconducting gap as
a function of x (black), and the critical concentration xc for
systems with different superconducting gaps (blue).
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FIG. 3 (color online). RKKY interaction between two magnetic
impurities as a function of the separation R and the Fermi energy
Ef calculated with J ¼ 0.5 eV, Ef ¼ 100 meV for (a) and
R ¼ 10 nm for (b). The insert in (a) shows the case for the
Fermi surface located at the Dirac point.
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the occupied states close to the superconducting gap
dominate the contribution to the RKKY interaction, the
corresponding wave vector is smaller than kF, leading to a
modification in the oscillation period. In Fig. 3(b), the
Fermi energy dependence of the RKKY interaction is also
presented.
From the RKKY interaction described above, we can

obtain the collective behavior of the magnetic impurities
under the realistic assumption that their spatial distribution
is random. The positional randomness combined with
Eq. (9) leaves the in-plane interaction frustrated (for a
more thorough discussion on the in-plane magnetization,
see the second section of the Supplemental Material [24]),
while the ferromagnetic interaction between the z compo-
nents of the local spins can be optimized. Accordingly, a
z-direction-aligned ferromagnetic ground state is expected
for the multiple magnetic impurity system, even though the
atomic s-d hybridization is isotropic. The mean-field (MF)
virtual crystal approximation can be employed to estimate
the Curie temperature TMF

c , given as [26,27]

kBTMF
c ¼ 2x

3

X
iði≠0Þ

J0i; ð11Þ

where the sum extends over the virtual sites and x is
the concentration of the magnetic impurities on those
virtual sites. The continuum limit is reached with
kBTMF

c ¼ ð4πni=3Þ
R
∞
0 rJðrÞdr, where ni is the density

of the magnetic impurities. For Bi2Se3, the virtual sites are
the locations of the Bi atoms. By setting x ¼ 3%,
a ¼ 4.14 Å, J ¼ 0.5 eV, and Ef ¼ 0.1 eV, the estimated
Tc for different superconducting gaps is listed in Table I. As
shown in Fig. 3(a), the behaviors of the RKKY interaction
are dramatically influenced by the superconducting gap,
while the MF Tc shows nearly constant values. These
intriguing phenomena stem from a subtle compensation
effect between ferromagnetism and antiferromagnetism:
For Δ ¼ 0, the magnitude of the long-range RKKY
interaction shows a spatial dependence as 1=R2 [20],
favoring antiferromagnetism, while the short-range corre-
lation always favors ferromagnetism. For Δ ≠ 0, both the
magnitude and the long-range oscillation of the RKKY
interaction will be suppressed, which again mutually
compensate each other, leading to robust Curie temper-
atures, as listed in Table I.
Chiral TSC and topological phase transition.—Now we

discuss the topological state of the TI-SC interface in the
presence of randommagnetic impurities. Based on the DOS
study, we already found that the proximity-induced super-
conductivity is robust unless the impurity concentration is

too high. From the MF approximation, we can therefore
estimate the effective exchange field induced by the
randomly distributed magnetic impurities, given by
Vex ¼ 3JxhSzi. Within the picture that a given magnetic
impurity interacts with an effective Zeeman field Beff ¼
x
P

iJ0ihSzi defined by all of the other magnetic impurities,
its magnetic polarization is given by hSzi ¼ SBðBeffS=
kBTÞ, where BðxÞ ¼ ð1þ 1=2SÞ coth ðð1þ 1=2SÞxÞ −
ð1=2SÞ coth ðð1=2SÞxÞ is the Brillouin function.
Therefore, the self-consistent solution of hSzi and Beff
can give rise to the temperature dependence of Vex, as
shown in Fig. 4(a). Importantly, the very existence of the
robust superconductivity and Vex characterize the chiral
nature of the superconducting system, as further elabo-
rated below.
In an analogy with Ref. [10], by defining the Bogoliubov

quasiparticle operators as γðrÞ ¼ P
σuσðrÞψ†

σðrÞ þ
νσðrÞψσðrÞ and solving the BdG equation HBdGΨðrÞ ¼
EΨðrÞ with ΨðrÞ ¼ ½ν↑ðrÞ; ν↓ðrÞ; u↓ðrÞ; u↑ðrÞ�T at geo-
metrical edges, we can find two types of Majorana edge
states by varying Vex. First, for

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ Δ2

p
> Vex > μ,

there are two helical edge states, given by Ψ�ðxÞ¼
ð1=N �Þð

ffiffiffiffiffiffi
V−

p
;∓i

ffiffiffiffiffiffiffi
Vþp

;∓eiϕ
ffiffiffiffiffiffiffi
Vþp

;ieiϕ
ffiffiffiffiffiffi
V−

p ÞTe−ηx, where
V� ¼ Vex � μ, η ¼ ðΔ�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
VþV−

p
Þ=νF, and N � are the

normalization parameters. It is easy to verify that
γ†ðkyÞ ¼ γð−kyÞ, which implies that the solutions are
Majorana edge modes. In order to give an intuitional
picture of the helical edge states, we evaluate the low-
energy “k · p” Hamiltonian asHh ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðμ=VzÞ2

p
νFkyτz,

where τz is the Pauli matrix. Second, for Vex >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ Δ2

p
,

there are two degenerate chiral Majorana edge
states Ψ�ðxÞ ¼ ð1=N �Þð

ffiffiffiffiffiffi
V−

p
;−i

ffiffiffiffiffiffiffi
Vþp

;∓eiϕ
ffiffiffiffiffiffiffi
Vþp

;
�ieiϕ

ffiffiffiffiffiffi
V−

p ÞTe∓ηx, whereN � are the normalization param-
eters. The chiral nature can be illustrated by the low-energy
k · p Hamiltonian, given by Hc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðμ=VzÞ2

p
νFky.

Therefore, by varying the exchange field Vex, we can
expect a topological phase transition from a helical to a
chiral TSC at Vex ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ Δ2

p
, and the corresponding

transition temperature is marked by Ts in Fig. 4(a).
As a quantitative measure for the occurrence of

the topological phase transition, we calculate the first
Chern number for systems before and after the transition.
The first Chern number can be defined as the integral
of the Berry curvature over the first Brillouin zone
[16]: C1 ¼ ð1=2πÞ RBZð∂kxAky − ∂kyAkxÞdk, where Akα ¼
−i
P

nhunðkÞj∂kα junðkÞi is the Berry connection, α ¼ x; y,
and the index n runs over all of the occupied states.
Hamiltonian (1) can be regularized on a square lattice with
the substitution px;y → a−1 sin ðpx;yaÞ, where a is the
lattice constant. The results for μ ¼ 0 are shown in
Fig. 4(b). There are two sets of subbands due to spin
degrees of freedom. When Vex < Δ, the resulting Chern
numbers from the two sets are equal in magnitude but
opposite in sign and the total Chern number C1 ¼ 0

TABLE I. Robust Curie temperatures for systems of different
superconducting gaps, obtained with x ¼ 3%.

Δ 0 meV 5 meV 10 meV 15 meV

TMF
c 3.282 K 3.228 K 3.234 K 3.243 K
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signifies a nonchiral TSC state. When Vex > Δ, one set of
the subbands will be inverted by the exchange field and
the corresponding Chern number will also reverse sign,
resulting in C1 ¼ 1, indicating a chiral TSC state.
So far, we have focused on realizing chiral TSC at the

TI-SC interface. As an extension, here we also briefly
discuss the proposed scheme in connection with recent
experiments [28,29]. When Bi2Se3 was grown on the
d-wave SC of Bi2Sr2CaCu2O8þδ, an s-wave superconduct-
ing gap of ∼15 meV was observed on the top surface of the
TI [29]. Based on these experiments, we expect that the
proposed mechanism can also be exploited to realize chiral
TSCs on tops of TI-SC heterostructures.
In summary, we have proposed an alternative and

conceptually simpler scheme to realize a chiral TSC,
achieved by doping magnetic impurities directly at a
TI-SC interface. We have found that, at physically realistic
concentrations of randomly distributed magnetic impu-
rities, the proximity-induced superconductivity is robust,
and the RKKY interaction gives rise to a persistent
ferromagnetic state independent of the superconducting
gap. The ferromagnetic state can naturally provide a strong
and uniform exchange field, which in turn breaks the
TRS, driving the system from a nonchiral into a chiral
TSC phase at sufficiently low temperatures. The proposed
scheme is, in principle, also applicable on top of a
TI-SC heterostructure, or when the TI is replaced by a
normal semiconductor with strong Rashba SOC. These
findings, therefore, provide new platforms for realizing
chiral TSC, observing Majorana zero modes, and execut-
ing TQC.

This work was supported by National Natural Science
Foundation of China under Grants No. 11034006 and
No. 61434002, and the National Key Basic Research
Program of China under Grant No. 2014CB921103.

Note added.—After the submission of this Letter, a related
paper focusing on the RKKY interaction appeared [30].
A closer comparison between the two studies is made in
the Supplemental Material [24].
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FIG. 4 (color online). (a) The effective exchange field Vex
(black line) and the superconducting gap Δ (red line) as a
function of the temperature. Ts indicates the topological phase
transition temperature, which is below the ferromagnetic Curie
temperature Tc. (b) The Chern number as a function of Vex. The
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