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We study constraints imposed by the Galilean invariance on linear electromagnetic and elastic responses
of two-dimensional gapped systems in a background magnetic field. Exact relations between response
functions following from the Ward identities are derived. In addition to the viscosity-conductivity relations
known in the literature, we find new relations between the density-curvature response and the thermal Hall
response.
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Introduction.—Strongly interacting two-dimensional
electron gas in a magnetic field is notorious for defying
analytical approaches. Recently some progress was
achieved in understanding these systems with the use of
local Galilean symmetry [1–3]. This symmetry is present in
the simplest models of noninteracting electrons. It is also
possible to add nontrivial interactions to this model that
preserve the local Galilean invariance (LGI) [1]. Thus,
locally Galilean invariant systems may serve, at the very
least, as toy models for the fractional quantum Hall states.
In this Letter we find the constraints on the linear

response functions imposed by LGI. In addition to the
known electromagnetic responses, we include responses
to an external gravitational field. The latter can be used to
compute various viscoelastic responses. For systems in a
background magnetic field some of these constraints were
found in Ref. [1]. Those constraints relate wave vector
dependent Hall conductivity with Hall viscosity. Later,
more general relations of this type were obtained [4]. The
relations between various linear response functions derived
in this work include the generalization of a viscosity-
conductivity relation to the arbitrary gyromagnetic ratio gs,
Kohn’s theorem for electric susceptibility and its gravita-
tional analogue. These Ward identities impose an infinite
number of constraints on the coefficients in wave vector
and frequency expansions of response functions.
It is well known that the Hamiltonian of a charged particle

with the gyromagnetic ratio gs ¼ 2 is factorizable and has a
macroscopic degeneracy of the first Landau level even in the
presence of an inhomogeneous magnetic field and spatial
curvature [5,6]. In Refs. [2,6] it was argued that at this
special value of gs the response functions are regular in the
limit of the cyclotron frequency going to infinity. We use
this argument together with LGI to relate the chiral central
charge to a bulk density-curvature response. This relation
allows us to predict the value of this bulk response for states
described by a K matrix with ν ≤ 1. A similar relation for
the Laughlin’s functions was recently found in Ref. [7].

Galilean invariance.—In Galilean invariant systems
with one species of particles or with multiple species with
equal e=m for each particle, there is a relation between
the mass current T0i and the electric current Ji (see, e.g.,
Ref. [8]):

Ji ¼ e
m
T0i: ð1Þ

Here we consider the local version of the Galilean
symmetry following Ref. [9]. The expectation values
of the electric current Ji and the stress tensor Tij in
the background e=m and gravitational fields can be
computed as

Jμ ¼ 1ffiffiffi
g

p δSeff
δAμ

; Tij ¼ 2ffiffiffi
g

p δSeff
δgij

: ð2Þ

Here Seff is the effective action that encodes the response
of the underlying microscopic theory to external perturba-
tions and J0 is the charge density (denoted as ρ later on).
The local symmetry of the action that insures Eq. (1)
(for gs ¼ 0) is [9]

δAi ¼ −ξkFki −mgik _ξ
k − ∂iðαþ AkξkÞ;

δA0 ¼ −ξkFk0 − ∂0ðαþ AkξkÞ þ
gs
4

ϵijffiffiffi
g

p ∂iðgjk _ξkÞ;

δgmn ¼ −ξk∂kgmn − gmk∂nξ
k − gnk∂mξ

k; ð3Þ
where Fik ¼ ∂iAk − ∂kAi is the field strength tensor. The
last term in Eq. (3) accounts for the effective magnetic
moment of electrons equal to gs=4 [10].
These transformations combine a local version of

Galilean transformations parametrized by ξkðx; tÞ and
gauge transformations αðx; tÞ. In the following we use
Galilean transformations accompanied by a particular
gauge transformation α ¼ −Akξ

k, so that Eqs. (3) have
an explicitly gauge invariant form. Conventional (global)
Galilean transformations corresponding to a constant
velocity vk are given by ξkðx; tÞ ¼ vkt.
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Background field separation.—In the following we
assume that the background e=m and the gravitational
fields are small and smooth deviations from the constant
background magnetic field F̄12 ¼ B0 and the flat metric
ḡik ¼ δik. The vector potential can be written as Āi þ Ai,
where the first term corresponds to the constant magnetic
field. The second term generates time-dependent, inhomo-
geneous electromagnetic fields.
The constant part of the external magnetic field B0 is a

parameter of the macroscopic theory and will enter the
coefficients in the gradient expansion of the effective
action. We do not transform it under Galilean transforma-
tions but instead absorb the corresponding part into the
transformation laws of the vector potential Ai [compare to
Eq. (3)] as

δAi ¼ −ξkF̄ki − ξkFki −mgik _ξ
k: ð4Þ

The external metric is a small perturbation over the flat
background gik ¼ δik þ δgik.
Building blocks for quadratic effective action.—To

restrict the form of the effective action we use the rotational
invariance, locality, gauge invariance, and similarities
between electromagnetism and gravity.
The gauge invariance requires that the effective action

depends on thevector potentialAμ only through electric field
Ei and magnetic field B. The only exception is the Chern-
Simons term, which is gauge invariant only up to boundary
terms.We also assume that the systemunder consideration is
gapped. Therefore, linear response functions are local, i.e.,
can bewritten as Taylor series in frequency and momentum,
so that the quadratic effective action is constructed as an
expansion in derivatives. As transformations (3) mix differ-
ent orders in the gradient expansion, we expect nontrivial
relations between the universal response coefficients and
higher order gradient corrections thereof.
We analyze the gravitational terms in a similar way by

introducing an Abelian gauge field that encodes coupling to
the background curvature. This field is a nonrelativistic
spin connection [1] ω0 ¼−1

2
ϵabeaj _ebj , ωi¼−1

2
ϵabeaj∂iebj −

ð1=2 ffiffiffi
g

p Þϵjk∂jgik, where eaj are the time-dependent
zweibeins [11]. The spin connection depends only on
the metric and transforms as an Abelian gauge field under
local SOð2Þ spatial rotations ωμ → ωμ þ ∂μα.
With the spin connection at hand, we construct the

gravielectric Ei ¼ _ωi − ∂iω0 and gravimagnetic 1
2

ffiffiffi
g

p
R ¼

∂1ω2 − ∂2ω1 fields which are explicitly invariant under the
local SOð2Þ rotations. Notice that the parity properties of
e=m fields and their elastic cousins are different: R is a
scalar, while B is a pseudoscalar and Ei is an axial vector.
In the linear order in deviations from the flat background,

we explicitly have

R ≈ ∂i∂jgij − Δgii; Ei ≈ −
1

2
ϵjk∂j _gik; ð5Þ

where Δ is the flat space Laplace operator.

The spin connection ω can be expressed in terms of
perturbations of the metric as follows:

ω0 ¼
1

2
ϵjkδgij _gik ωi ¼ −

1

2
ϵjk∂jδgik: ð6Þ

There is an additional building block describing
dilatations—the trace of the metric which we denote as

G≡ δgii: ð7Þ

Effective action.—In the following, we present the
quadratic effective action as a sum

Seff ¼ Sð1Þ þ SðηÞ þ SðgeomÞ þ SðemÞ þ SðgÞ þ SðmixÞ: ð8Þ
The first contribution collects all “linear” terms,

Sð1Þ ¼
Z

d2xdt
ffiffiffi
g

p ð−ϵ0 þ ρ0A0Þ: ð9Þ

Notice that although Eq. (9) is linear in A0, it also contains
(through

ffiffiffi
g

p
) terms quadratic in deviation from the constant

background. This term encodes the properties of the
unperturbed ground state: energy density ϵ0 and density
ρ0 ¼ ν=2πl2, where l2 ¼ 1=B0 is the magnetic length and ν
is the filling fraction.
The coefficients in Eq. (9) and below generally depend

on the external magnetic field B0, the filling fraction ν, and
other microscopic parameters of the system such as the
Coulomb gap, the cyclotron mass, etc.
The next term has a form

SðηÞ ¼
Z

d2xdtηHϵjkgij _gik; ð10Þ

where ηH (in Fourier space) is a function of frequency.
One can think about ηHðωÞ as of frequency dependent
Hall viscosity. We notice comparing to Eq. (6) that the term
(10) at zero frequency has a form 2ηHð0Þω0 which allows
us to identify 2ηHð0Þ as the orbital spin density and
s̄ ¼ 2ηHð0Þ=ρ0 as an average orbital spin per particle.
For the conformal block states [12], the latter is given
by 2s̄ ¼ ν−1 þ 2hψ, where hψ is the conformal weight
of the electron operator in the “neutral” sector of the
conformal field theory [13,14].
The next contribution contains topological and

geometric terms [15]

SðgeomÞ ¼
Z �

σH
2
AdAþ SAdωþ Cωdω

�
; ð11Þ

known as the Chern-Simons, Wen-Zee [16], and gravita-
tional Chern-Simons terms. These terms are special, as they
are invariant with respect to gauge transformations and
local rotations only up to full derivatives. In the presence of
the boundary, they are related to the boundary theory and
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are the natural candidates for encoding universal properties.
It is convenient to allow ηH, σH, S, and C in Eq. (11) to
depend on frequency so that they coincide with their
conventional values at zero frequency. In the following
expressions [(12)–(14)], the coefficients ϵ; σ; μ;… depend
on both frequency and momentum [17].
The electromagnetic response is represented by

SðemÞ ¼
Z

d2xdt(ϵE2 þ σð∂iEiÞB − μ−1B2): ð12Þ

Here ϵ and μ are electromagnetic susceptibilities and σ
encodes the gradient corrections to the Hall conductivity.
Analogously, we write down the gravitational and mixed

terms

SðgÞ ¼
Z

d2xdtðϵgE2 þ σgð∂iEiÞR −
1

μg
R2

þ ζ3GRþ ζ4Gð∂iEiÞ þ ζ5G2Þ; ð13Þ

SðmixÞ ¼
Z

d2xdtðϵmðEiEiÞ þ σm1ð∂iEiÞR −
1

μm
BR

þ σm2ð∂iEiÞBþ ζ1Gð∂iEiÞ þ ζ2GBÞ: ð14Þ

Equations (8)–(14) give the effective action expanded to the
second order in fields and to an arbitrary order in gradients.
Ward identities.—Equations (8)–(14) contain all possible

combinations that can enter real, rotationally, gauge, and
parity-time invariant quadratic effective action of a gapped
system in a transverse constant magnetic field. They define
19 different response coefficients ηH; σH; S; C; ϵ;…. The
coefficients in Seff encode all possible two point correlation
functions of electric charge density, electric current, and
stress tensor at finite frequency ω and momentum k.
Imposing the LGI (3) will give additional relations between
the coefficients.
The next step is to derive the Ward identities of LGI.

We apply the transformations (3) to Seff and demand the
invariance of the full effective action under these trans-
formations up to the terms quadratic in fields. This require-
ment imposes constraints on the linear response functions
in all orders of the gradient expansion in a form of a system
of linear (in response functions) equations. In full general-
ity these relations are not enlightening and we present only
several particular relations.
Hall conductivity and orbital spin.—We start with the

following relations:

σH ¼ ν

2π

ω2
c

ω2
c − ω2

; S ¼ 2ηHl2
ω2
c

ω2
c − ω2

; ð15Þ

where ωc ¼ B0=m is the cyclotron frequency. These are the
familiar relations for the Hall conductivity and theWen-Zee
shift [4]. Integrating the charge density ρ from Eq. (2) over
the curved manifold and using Eq. (15), we obtain that the

shift in the total charge on the curved manifold of the Euler
character χ is given by

Q ¼ νNϕ þ νs̄χ: ð16Þ

Zero momentum.—Here we present theWard identities at
zero momentum, k ¼ 0. In order to lighten up the notations
we suppress the dependence on frequency. We stress that all
response functions below are evaluated at finite frequency
ω and k ¼ 0.
We start with relations

ϵðωÞ ¼ ν

4π

ωc

ω2
c − ω2

; ϵmðωÞ ¼ ηHl2
ωc

ω2
c − ω2

: ð17Þ

The first relation determines the homogeneous dielectric
response function ϵðω; k ¼ 0Þ completely and the pole at
ωc reflects Kohn’s theorem. The second relation is an
elastic analogue of Kohn’s theorem.
The next relation is the finite frequency version of the

Hall viscosity-conductivity relation [1]:

σ

l2
¼ ω2

cðω2
c þ ω2Þ

ðω2
c − ω2Þ2

�
ηHl2 −

νgs
16π

�
−

ω2
c

ω2
c − ω2

μ−1

ωcl2
: ð18Þ

Here we slightly generalized the relation obtained in
Ref. [4] by including an arbitrary gs factor.
We also find two elastic analogues of Eq. (18):

μ−1m
ωcl2

¼ C
2
−
gs
4
ηHl2

ω2
c þ ω2

ω2
c − ω2

−
σm1

l2
þ ϵð1Þm ω2

ωc
; ð19Þ

σm2

l2
¼ gs

2
ηHl2

ω2
c

ω2
c − ω2

þ ð2ϵð1Þm − ϵgÞωc; ð20Þ

where we introduced ðklÞ2ϵð1Þm ¼ ϵmðk;ωÞ − ϵmð0;ωÞ.
The coefficients ζ1;…; ζ5 are completely fixed by the

Galilean invariance in terms of other coefficients. Their
expansions start with ω2 and we do not list them here.
Regularity of the limit ωc → ∞.—Let us consider the

static limit ω ¼ 0 of Eq. (19),

mμ−1m ð0Þ ¼ C
2
−
νs̄gs
16π

−
1

l2
σm1ð0Þ: ð21Þ

The coefficient σm1ð0Þ describes the contribution to the
expectationvalue of the density proportional to theLaplacian
of curvature ΔR. We introduce b ¼ −8πσm1ð0Þ=l2, defined
as a coefficient in the gradient expansion for the static
density-curvature response [18]

δρ ¼ νs̄
4π

Rþ b
8π

l2ΔRþ � � � : ð22Þ

For gs ¼ 2 the ground state of noninteracting electrons
is degenerate even in the presence of inhomogenious
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background fields and it is expected that the limit m → 0
(i.e., ωc → ∞) is regular for ν ≤ 1 [2,6]. Therefore, μ−1m ð0Þ
is finite in the limit m → 0 at gs ¼ 2.
We take the limit m → 0 of Eq. (21) at gs ¼ 2. The left-

hand side vanishes and we find a relation between the
coefficients of the Wen-Zee and gravitational Chern-
Simons (gCS) terms (11) and the coefficient b:

C ¼ S
2
−

b
4π

: ð23Þ
This relation is obtained for gs ¼ 2. However, b is a
response of the density to curvature and cannot depend
on gs; neither can the coefficients C or S. Therefore, the
relation (23) is valid for general gs.
Chiral central charge.—We split the geometric part of

the effective action (11) as

SðgeomÞ
eff ¼

Z
ν

4π
ðAþ s̄ωÞdðAþ s̄ωÞ − c

48π
ωdω: ð24Þ

Here we used Eq. (15) at zero frequency. The first con-
tribution in Eq. (24) reflects the Wen-Zee arguments [16]
(see also Ref. [2]) stating that every electron carries not only
charge, but also an intrinsic orbital spin s̄ that couples to the
curvature. Thus, in any transport process the electric current
will be accompanied by the “spin current.” Formally, this
amounts to changing the vector potential as Ai → Ai þ s̄ωi.
We have noted in Ref. [19], however, that even in the
noninteracting case with ν ¼ 1, there is an additional
contribution to the gCS term represented by the second
term in Eq. (24). Comparing Eq. (11) with Eq. (24), we
identify C ¼ ðν=4πÞs̄2 − ðc=48πÞ and rewrite Eq. (23) as

b ¼ νs̄ð1 − s̄Þ þ c=12: ð25Þ
This equation relates the coefficients of geometric terms
with the static bulk density-curvature response. A relation of
this kind appeared recently in Ref. [7].
We refer to c as to the chiral central charge. In relativistic

physics c is related to the gravitational anomaly at the
boundary [20].
Let us consider the relation (25) for a few cases where b

has been computed independently. The first such case is
noninteracting fermions filling the lowest Landau level
ν ¼ 1. It was found in Ref. [19] that in this case ν ¼ 1,
s̄ ¼ 1=2, and b ¼ 8πσm1ð0Þ=l2 ¼ 1=3. Then Eq. (25) gives
c ¼ 1 corresponding to C ¼ 1=24π and is in agreement
with the straightforward calculation of Ref. [19]. The
coefficient b was also computed in Refs. [21,22] from
the Bergman kernel expansion.
For the Laughlin states νs̄¼1=2 and b¼1

3
þððν−1Þ=4νÞ

[7]. Using Eq. (25) and assuming that the results of
Ref. [7] are compatible with Galilean invariance we predict,

C ¼ 1

8π
−

1

4π
b ¼ 1

24π
þ 1

2π

ν−1 − 1

8
; ð26Þ

again corresponding to c ¼ 1.

In both cases the boundary theory is the chiral boson
c ¼ 1 and the results given by Eq. (25) are in agreement
with our expectations for the (chiral) central charge.
Therefore, we conjecture that c in Eq. (24) coincides with
the central charge of boundary theory for all other states
of the fractional quantum Hall effect (FQHE) hierarchy.
Note that the relation (25) was derived using regularity

conditions at gs ¼ 2 specific for ν ≤ 1 and is not supposed
to hold for ν > 1. However, for a noninteracting case with
ν ¼ N we found using the results of Ref. [19] that Eq. (25)
can still be written as a sum over filled Landau levels

b ¼
XN
n¼1

(νns̄nð1 − s̄nÞ þ
cn
12

): ð27Þ

Here s̄n ¼ ð2n − 1Þ=2, νn ¼ 1, and cn ¼ 1 for the nth
Landau level.
The significance of Eqs. (24) and (25) is that in the

nonrelativistic case, the averaging over the microscopic
degrees of freedom produces two gCS terms. One origi-
nates from the coupling of the orbital spin to the curvature
and the other one is related to the gravitational anomaly of
the boundary.
Abelian quantum Hall states.—For general Abelian

states we rewrite the geometric action (24) as

SðgeomÞ
eff ¼ 1

4π

Z
ðtiAþ s̄iωÞK−1

ij dðtjAþ s̄jωÞ −
c
12

ωdω;

ð28Þ
where the K matrix, the charge vector ti, and the spin vector
s̄i characterize the state [23]. Then Eq. (23) takes the form
(in matrix notations)

c
12

¼ ðs̄ − tÞtK−1s̄þ b; ð29Þ

generalizing Eq. (25) to more general Abelian quantum
Hall states. Here the parameter c counts the number of
chiral propagating modes and is equal to c ¼ nþ − n−,
where n� is the number of positive and negative eigen-
values of the K matrix, respectively.
We conclude this section with a few examples of

applications of Eq. (29) to some well-known FQHE states.
For the Laughlin’s state ν ¼ 1=m, K ¼ ðmÞ, t ¼ 1,
s̄ ¼ m=2, and c ¼ 1 and we obtain b ¼ 1

3
− (ðm − 1Þ=4).

For the corresponding particle-hole conjugated state [23]
ν ¼ 1 − 1=m, t ¼ ð1; 0Þ, s̄ ¼ ð1

2
; ð1 −mÞ=2Þ, c ¼ 0, and

K ¼
�
1 1

1 1 −m

�
:

The relation (29) gives b ¼ ðm − 1Þ=4.
As an example of a non-Abelian state we consider the

fermionic Pfaffian state [12] with ν ¼ 1=2, t ¼ ð−1;−2Þ,
s̄ ¼ ð−3=2;−3Þ, c ¼ 3=2, and
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K ¼
�
3 4

4 8

�

[23,24]. We obtain b ¼ −1=4.
Thermal Hall effect.—It has been demonstrated

that the thermal Hall current (the Leduc-Righi effect) is
related to the chiral central charge of edge modes via the
relation [25–28]

KH ¼ ∂JH
∂T ¼ πk2BT

6
c: ð30Þ

We use Eq. (29) in order to express the thermal Hall
conductivity through other response functions:

KH

2πk2BT
¼ ðs̄ − tÞtK−1s̄þ b: ð31Þ

An important remark is in order. Equation (31) allows us
to obtain the thermal Hall response in terms of the bulk
quantities. Of course, “measuring” b involves gradients of
curvature or “tidal forces” (cf. Ref. [30]).
Conclusion.—We have explored the constraints imposed

by the local Galilean invariance on linear electromagnetic
and gravitational responses of gapped systems in the
background of a quantizing magnetic field. Several new
relations between linear response functions have been
found [see, e.g., Eqs. (19) and (20)]. Using the regularity
of the limit of large cyclotron frequency ωc → ∞ in
addition to the Galilean invariance, we have found a
relation [Eqs. (25) and (29)] between the bulk density-
curvature response coefficient b [Eq. (22)] and the chiral
central charge. The relation has been tested for the cases of
noninteracting electrons and for Laughlin’s states using the
results of Refs. [7,19]. As an application we have used
the relation to predict the values of the density-curvature
response b for several other quantum Hall states. It would
be interesting to understand whether expression (29) is
general and can be derived without the use of the Galilean
invariance.
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