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Recently, dynamical phase transitions have been identified based on the nonanalytic behavior of the
Loschmidt echo in the thermodynamic limit [Heyl et al., Phys. Rev. Lett. 110, 135704 (2013)]. By
introducing conditional probability amplitudes, we show how dynamical phase transitions can be further
classified, both mathematically, and potentially in experiment. This leads to the definition of first-order
dynamical phase transitions. Furthermore, we develop a generalized Keldysh formalism which allows us to
use nonequilibrium dynamical mean-field theory to study the Loschmidt echo and dynamical phase
transitions in high-dimensional, nonintegrable models. We find dynamical phase transitions of first order in
the Falicov-Kimball model and in the Hubbard model.
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The last two decades have witnessed an extraordinary
boost in the investigation of strongly correlated systems out
of equilibrium, both experimentally and theoretically. This
renewed interest is the consequence of the impressive
experimental advances achieved in the manipulation of cold
atoms in optical lattices [1–4], and in ultrafast time-resolved
spectroscopy in solids [5–7]. Using systems of cold atoms,
which are very well isolated from the environment and easily
tunable, one can now address fundamental and long-standing
problems in statistical physics. In particular, many intriguing
phenomena have recently been uncovered in relation to the
relaxation of excited many-body states towards thermal
equilibrium [8]. Thermalization can be hampered due to
(near) integrability [9] and delayed by prethermalization
[10–12], and the different relaxation regimes can be sepa-
rated by a narrow crossover as a function of some parameter
[13,14]. Near symmetry-breaking phase transitions, the
dynamics can be altered entirely by the presence of non-
thermal critical points [15–17]. An unsolved question in this
context is whether some of these dynamical crossover
phenomena reflect an underlying “sharp” transition, involv-
ing a mathematical nonanalyticity of some nature.
In the transverse-field Ising model, Heyl et al. [18] found

a nonanalytic time dependence of the Loschmidt echo, i.e.,
the probability to return to the initial state within a nontrivial
time evolution. Although the latter is not directly related to
the time dependence of thermodynamic observables, this
observation suggests an intriguing new starting point for
analyzing and classifying the dynamical behavior of many-
particle systems. To be more precise, we consider a quantum
quench, i.e., a sudden change of the Hamiltonian from some
Hðt < 0Þ ¼ H0 to Hðt ≥ 0Þ ¼ H, which triggers a non-
trivial out-of-equilibrium evolution. Heyl et al. [18] defined
a dynamical phase transition (DPT) as a nonanalytic
behavior of the return probability amplitude [19]

AðtÞ ¼ hψ0je−iHtjψ0i ð1Þ

as a function of time, where jψ0i is the ground state of H0.
The return probability, defined by LðtÞ≡ jAðtÞj2, is the
Loschmidt echo. In analogy to the equilibrium partition
function, which has a large deviation form Z ¼ Tre−βH ∼
e−βNfðβÞ in the thermodynamic limit N → ∞ with a free
energy density fðβÞ, AðtÞ has a large deviation limit of the
form AðtÞ ∼ e−NaðitÞ, and nonanalytic behavior as a function
of time can occur in the thermodynamic limit [20].
Since the seminal work [18], further progress has been

achieved in the understanding of DPTs [24–32], but
important questions remain open. First, the Loschmidt
echo is the probability of performing no work in a double
quench experimentH0 → H → H0 [18], but it is not in any
obvious, simple way related to the time evolution of
physical observables, which also hampers a further char-
acterization and classification of DPT’s. Furthermore,
DPTs may be hard to access in nonintegrable systems
which do not allow for an exact solution: the computation
of an overlap amplitude is most direct with wave-function
based numerical techniques, which are, however, almost
exclusively used for finite or one-dimensional systems.
Examples thereof are exact diagonalization, which is
restricted to small systems, or infinite DMRG [29]. In this
Letter we present two concepts to address these questions:
first we introduce conditional amplitudes and generalized
expectation values, which allow for a further classification
of DPTs and also for the definition of first-order transitions.
Second, we explain how the amplitude (1) can be computed
with diagrammatic many-body techniques and nonequili-
brium dynamical mean-field theory [33], which makes it
accessible for a large class of high-dimensional, interacting
models directly in the thermodynamic limit.
First-order dynamical phase transitions.—As Eq. (1)

gives the probability amplitude for the return to the initial
state jψ0i, a natural way to further classify a DPT is to more
closely characterize the “path” along which this return
happens. As we will see, a first-order DPT occurs when
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these paths for infinitesimally different propagation times t
can be distinguished by a nonvanishing change in a
macroscopic measurement. To illustrate this idea, let X̂ ≡
Nx̂ be any observable which is extensive in the system size
N. Then we can define a conditional return amplitude

~Aðt; xÞΔx≡ hψ0je−iHðt−t1ÞPΔx
x e−iHt1 jψ0i; ð2Þ

where PΔx
x can be any operator that selects eigenstates of x̂

with eigenvalues in a small interval of size Δx around x,
e.g., PΔx

x ∝
P

ie
−½hijx̂jii−x�2=2Δx2 jiihij. (Note that this choice

implies that P, and, hence, ~Aðt; xÞ is a smooth function of x
for finite systems.) In a many-body path integral formu-
lation [34], Eq. (1) can be written as the sum over all paths
in some configuration space (Grassmann variables for
fermions, complex fields for bosons), with a boundary
condition provided by the state jψ0i, while ~Aðt; xÞ sums
the subclass of paths fixed by the constraint x̂ ¼ x at
the intermediate time t ¼ t1. By construction, we have
AðtÞ ¼ R

dx ~Aðt; xÞ. Assuming again a large deviation form
~Aðt; xÞ ¼ e−N ~aðit;xÞ for N → ∞, the integral will be domi-
nated by its saddle-point values, i.e., aðitÞ ¼ ~a(it; x�ðtÞ),
where the complex number x�ðtÞ is determined by
d ~a=dxjx¼x� ¼ 0. In the presence of several saddle points
the dominant one can change as a function of the parameter
t, which defines a first-order dynamical transition, in
analogy to first-order transitions in equilibrium. Because
such a first-order transition is a change of the propagator
(1), its detection should not depend on the particular choice
of x̂ or t1, but should be reflected by an abrupt change of the
generalized expectation value of a generic observable Ŷ,

hŶðt1ÞiA ¼ AðtÞ−1hψ0je−iHðt−t1ÞŶe−iHt1 jψ0i; ð3Þ

which is obtained from AðtÞ by an infinitesimal variation
hŶðt1ÞiA ¼ iðδ lnAηðtÞ=δηðt1ÞÞjη¼0, of a field ηðt0Þ coupling
to Ŷ, with AηðtÞ ¼ hψ0jTt exp½−i

R
t
0 dt

0ðH þ ηðt0ÞŶÞ�jψ0i.
One of the main results of this work is that both the
expectation values Eq. (3) and the rate aðitÞ can be easily
computed within the DMFT formalism, as we show later.
It follows from the discussion above that the expectation
value of x̂ yields the complex saddle point x�ðtÞ, which
abruptly changes as a function of t.
Before discussing first-order DPTs’ in specific models, it

is important to note how generalized expectation values are
related to real measurements, in spite of the fact that the
quantity hŶiA itself is in general complex and only real
probabilities like the Loschmidt echo can be considered
measurable. To make the connection, we consider the
Loschmidt echo, LδtðtÞ≡ jhψ0je−iHðt−t1Þe−igŶδte−iHt1 jψ0ij2
of an experiment with an extended quench protocol
involving a quench H0 → H at time zero, a short inter-
mediate propagation from t1 to t1 þ δt with a Hamiltonian
gŶ, and a final propagation withH [35]. Taking the limit of
small δt yields

LδtðtÞ=LðtÞ ¼ 1þ 2gδtImhŶiA þOðg2δt2Þ: ð4Þ

In essence, the intermediate propagation adds a phase kick to
the propagator, thus measuring the imaginary part of hŶiA.
Dynamical mean-field theory.—We now proceed to

explain how the Loschmidt amplitude rate aðitÞ and the
expectation values (3) can be computed for high-dimen-
sional fermionic lattice systems. In the study of quantum
systems out of equilibrium, one of the most powerful
techniques is dynamical mean-field theory (DMFT)
[33,36], which captures local correlations in high-
dimensional systems, by mapping a lattice model onto
an effective impurity model. This mapping is exact in the
limit of infinite dimensions [37]. Here we use it to study the
generic correlated lattice model

HðtÞ ¼ H0 þUðtÞ
X
i

ni↑ni↓; ð5Þ

with H0 ¼ −
P

hi;jiσtσVijc
†
iσcjσ þ μ

P
iσniσ, which

describes fermions with two (spin) flavors on a lattice:
Vij are lattice-dependent hoppings, tσ is a spin-dependent
prefactor of the hopping term, and niσ ¼ c†iσciσ . The time-
dependent local repulsion energy UðtÞ is the parameter
driving the sudden quench fromH0 toH:Uðt ≤ 0Þ ¼ 0 and
Uðt > 0Þ ¼ U. The Hamiltonian (5) describes the Falicov-
Kimball model when one spin flavor is localized (t↓ ¼ 0),
and the Hubbard model when t↑ ¼ t↓ ¼ 1 (see below).
Nonequilibrium DMFT is based on the many-body

Keldysh formalism, which is formulated in terms of
Green’s functions and thus does not directly give access
to wave-function overlaps like in Eq. (1). In order to use a
Green’s function formalism to compute the overlap, we first
introduce in Eq. (1) an identity e−iH0teiH0t and a fictitious
temperature 1=β, which is then sent to zero,

AðtÞ ¼ lim
β→∞

eE0ðβ−itÞTrðe−βH0eiH0te−iHtÞ: ð6Þ

Formally, we can view the terms under the trace as the time
ordering of a generalized contour-dependent Hamiltonian
(GCH) defined on the Keldysh contour C ¼ C1∪C2∪C3,

ZC ≡ TrðT Ce
−i
R
C
dt0HCðt0ÞÞ; ð7Þ

where the Hamiltonians HCðtÞ on the upper (C1) and
lower (C2) real branches are different, HCðtÞ ¼ H for
t ∈ C1 and HCðtÞ ¼ H0 for t ∈ C2;3 (see Fig. 1). We can
define contour-ordered expectation values hOiHC

¼
Tr½T Ce

−i
R
C
dt0HCðt0ÞOðt1Þ�=ZC, which coincide with the

generalized expectation values (3) in the limit β → ∞.
At this point we note that the Keldysh formalism

remains applicable when the Hamiltonian is an explicit
function of the contour time. In particular, diagrammatic
rules for contour-ordered Green’s functions Gijðt1; t2Þ ¼
−ihT Cciðt1Þc†jðt2ÞiHC

remain unchanged, and one can
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define a self-energy and a Dyson equation formally
identical to those for the standard contour Hamiltonian.
With this, any argument leading to the DMFT formalism,
based on either power counting or the cavity formalism [36]
can be rewritten one to one for a generic contour depend-
ence ofHC. We use DMFTwith GCHs to study the Falicov-
Kimball and the Hubbard model, in the former using closed
equations of motion, in the latter employing a quantum
Monte Carlo algorithm [38]. Details on the DMFT solution
and its implementation are given in the Supplemental
Material [39].
Within the Green’s function formalism, the overlap

amplitude (6) is obtained from a coupling constant for-
malism. Taking the derivative of the free energy aUðitÞ ¼
limN→∞ − ð1=NÞ lnAUðtÞ involves the generalized expect-
ation value of the double occupancy d ¼ ð1=NÞPini↑ni↓,

∂aUðitÞ
∂U ¼ −i lim

β→∞

Z
t

0

dt0hdðt0ÞiHCðUÞ; ð8Þ

where the dependence of A [Eq. (6)] and HC on the
parameter U in H is made explicit. For convenience, we
also define the integrated double occupation ΔðU; tÞ≡
ð1=tÞ R t

0 dt
0hdðt0ÞiHCðUÞ. The free energy is then just the

integral of (8), i.e., aðitÞ ¼ limβ→∞it
R
U
0 dU0ΔðU0; tÞ.

Results.—As a first application of the above results, we
focus on the Falicov-Kimball model (FKM). It describes
two species of fermions: the itinerant ones, which can hop
between neighboring sites, and the immobile ones, which
act as an annealed disorder potential for the other species.
The Hamiltonian is given by Eq. (5) with hopping tσ ¼ 0
for one species. The FKM can be solved exactly within
DMFT [46]. It displays a rich phase diagram [47], includ-
ing a paramagnetic metal-insulator transition at half-filling
(hn↑i ¼ hn↓i ¼ 1

2
Þ, which is located at Uc ¼ 2 (indepen-

dent of temperature) for the Bethe lattice. The possibility of
an exact solution makes the FKM an important benchmark
also for nonequilibrium DMFT [48–52], in spite of the
peculiarity that thermalization is excluded because of the
missing interaction between the itinerant fermions [50].
The DMFT equations for a GCH, which are analogous to
the standard nonequilibrium DMFT solution [48], are given
in the Supplemental Material [39].

We will now show that the FKM undergoes a DPT. As
can be seen in Fig. 2, our DMFT results indicate that the
time-dependent generalized expectation value of the double
occupation abruptly changes its shape with increasing t

FIG. 1 (color online). Generalized contour-dependent Hamil-
tonian on the Keldysh contour C. The upper, lower, and imaginary
branches of the contour are denoted by C1, C2, and C3, respec-
tively. The arrows indicate the contour ordering, in this case t1
comes earlier than t2, i.e., t1≺t2. For a Green function Gðt1; t2Þ,
if t1 lies on C1 and t2 lies on C2, the latter cannot be shifted to
the upper contour.

FIG. 3 (color online). Dynamical phase diagram of the FKM.
Top: real and imaginary part of the integrated double occupation
ΔFKM obtained by increasing (decreasing) U in steps of ΔU ¼
0.1 from U ¼ 0.1 (U ¼ 6.0), and using the solution at U as a
seed for the iterative solution of DMFT at U þ ΔU (U − ΔU).
Bottom: Blue squares show the coexistence region around the
first transition branch, obtained at each t as described in the upper
panel. For the other transition branches, we provide only lower-
bound estimates for the coexistence region: In the region between
red dots at the same t, two coexisting solutions are found by
different choices in the update of the Green function at each
DMFT iteration (see Supplemental Material [39]).

FIG. 2 (color online). Time-dependent generalized expectation
value of the double occupancy dFKðt0Þ≡ hdðt0ÞiHC

in the FKM
for U ¼ 3.0 and increasing values of t from t ¼ 0.2 to t ¼ 2.0 (t
is evident from the length of the contour, 0 ≤ t0 ≤ t). Upper
panel: real part, lower panel: imaginary part. Data obtained with
β ¼ 50, a real-time discretization step dt ¼ 0.02 and a mesh of
Nτ ¼ 200 points on the imaginary axis (see the Supplemental
Material [39] for technical details).
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(see, for example, the curves at t ¼ 1.2 and 1.4). In the top
panel of Fig. 3 we plot the integrated double occupancy
ΔðU; tÞ as a function of U for given t. We indeed find a
nonanalytic curve, which displays a sequence of jumps in
whose vicinity two coexisting DMFT solutions for dFKM
are found. The coexistence of solutions evidences a first-
order dynamical transition. We map out the coexistence
region (shaded area in Fig. 3) by increasing (decreasing) U
in small steps, using the solution at a given U as a starting
input for the DMFT iteration at the next value of the
interaction. In the lower panel of Fig. 3 blue squares
give the bounds of the coexistence region obtained in
this way, indicating a transition for quenches to all
values U > Uc.
We have also applied our generalized Keldysh formalism

to the Hubbard model, which describes correlated fermions
with spin-1

2
on a lattice. A numerically exact solution of the

nonequilibrium DMFT equations can be obtained with a
continuous-time Monte Carlo impurity solver. The weak-
coupling approach [38,53] allows us to simulate reasonably
long time intervals, especially in the present setup, where
the time evolution starts from a noninteracting equilibrium
state, and where interaction vertices only have to be
sampled on the forward branch C1. However, since the
Green functions for GCHs lack causal symmetries [39], we
cannot use the improved estimator introduced in Ref. [38],
which makes the calculations time consuming.
Our results demonstrate that the Hubbard model also

exhibits a first-order DPT. In Fig. 4(a) we show that the
integrated double occupation after a quench in the strong
coupling regime (U ¼ 10) has a jump at t ∼ 0.85. As in the
case of the FKM, the first-order nature of the transition
is signaled by a coexistence of solutions, as shown in
Fig. 4(b). In contrast to the FKM, which is peculiar in the
sense that even in equilibrium the metal-insulator transition
prevails to all temperatures, the Hubbard model is a

nonintegrable model which does show thermalization after
a quench [13].
Conclusions.—This Letter provides two main insights

related to the study of DPTs. From a theoretical point of
view, we have shown that dynamical phase transitions can
be more deeply characterized by means of conditional
probability amplitudes and generalized expectation values,
which are experimentally accessible with suitable quench
protocols. From a methodological point of view, our main
result is that the Loschmidt echo can be obtained in the
context of DMFT by considering a general contour-depen-
dent Hamiltonian on the Keldysh contour. We find first-
order DPTs both for the Falicov-Kimball and the Hubbard
model. This raises the hope to actually observe DPT’s in
experiments with cold atoms, although issues like finite
size effects and the influence of the trap remain to be
investigated. In future work we plan to map out the precise
phase diagram, including the location of the discontinuities,
which requires extensive numerical calculations to perform
the additional coupling constant integral. The presence of
first-order DPTs in the FKM and the Hubbard model can
shed new light on the previous works on DPTs. For
example, there are indications that the nonanalyticity of
the Loschmidt rate found in the Ising model [18] and its
nonintegrable variants [29,32] are of first order: the
analytical expressions in Ref. [18] show that the general-
ized expectation value of the transverse magnetization M,
which is a derivative of the Loschmidt rate with respect to
the magnetic field, shows a jump at the critical times. (More
recent work on two-band systems indicates transitions of
different order [54]). An intriguing problem would thus be
to compute also conditional amplitudes (2) as a function of
time and M in this exactly solvable model, and thus to
characterize the analytical structure of the transition in
this model.

We thank K. Balzer, R. Fazio, M. Heyl, S. Kehrein, M.
Kollar, J. Mentink, D. Rossini, and S. Sayyad for useful
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ALPS [55]. P. W. is supported by FP7/ERC starting Grant
No. 278023.
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