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Plastic deformation mediated by collective dislocation dynamics is investigated in the two-dimensional
phase-field crystal model of sheared single crystals. We find that intermittent fluctuations in the dislocation
population number accompany bursts in the plastic strain-rate fluctuations. Dislocation number fluctua-
tions exhibit a power-law spectral density 1=f2 at high frequencies f. The probability distribution of
number fluctuations becomes bimodal at low driving rates corresponding to a scenario where low density of
defects alternates at irregular times with high populations of defects. We propose a simple stochastic model
of dislocation reaction kinetics that is able to capture these statistical properties of the dislocation density
fluctuations as a function of shear rate.
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Small-scale plasticity is characterized by intermittent
strain-rate fluctuations and strain avalanches that follow
robust power-law statistics, with detailed reports for both
crystalline materials [1–3] and amorphous materials [4].
Discrete dislocation dynamics simulations have been suc-
cessful in reproducing the power-law statistics of strain
avalanches in crystal plasticity assuming that the micro-
scopic origin of intermittency is attributed to dissipative
processes associated with crystal defects, such as disloca-
tions and disclinations [5–7]. The scaling behavior
observed near plastic yielding was initially explained by
analogy to the depinning phase transition [7–9]. However,
recent numerical simulations and experiments show that a
scale-free behavior of plastic bursts occurs also at applied
stresses away from the yielding point, which makes the
relation to nonequilibrium depinning transition a controver-
sional topic [10,11].
As the global plastic strain rate _γ, is directly proportional

to the mobile dislocation density ρd and mean velocity hvi
by Orowan’s relation: _γ ≈ bρdhvi, the intermittency of _γ is
influenced both by the collective dislocation velocity
(typically following stick-slip dynamics) and dislocation
number fluctuations. Previous work on plastic avalanches
has only taken into account the stick-slip motion of crystal
defects, due to the challenging nature of modeling dis-
location density fluctuations naturally, without introducing
artifacts due to ad hoc rules for dislocation reactions. The
question that concerns us here is what is the effect of
dislocation number fluctuations, particularly near the yield-
ing transition?
The purpose of this Letter is to investigate numerically

the density fluctuations of mobile dislocations as a crystal
is sheared near and away from yielding point. Conventional

techniques that solve the equations of motion for discrete
dislocations are not appropriate, because they would
require ad hoc rules for dislocation annihilation and
creation. Instead, we use the phase-field crystal approach
[12] which has been shown to be an efficient technique to
model plastic deformations in single and polycrystals, one
which can capture implicitly dislocation dynamics and
interactions [13,14]. Working in two dimensions, we find
that the total number of defects Nd is a highly fluctuating
quantity whose power spectrum at large frequency f is
characterized by a 1=f2 scaling, similar to that of the global
plastic strain rate. Also, Nd follows a nontrivial probability
distribution which becomes bimodal at small driving rates,
reflecting that both dislocation extinction events and a
dense population of interacting dislocations occur with a
nonzero probability. Finally, we develop a stochastic
coarse-grained model for the effective continuum mechan-
ics of our phase-field crystal model, based upon previous
work that has successfully described the regime of cyclic
loading and plastic regime where dislocations self-organize
into cell-like patterns [15–17]. In this way, we are able to
calculate the power spectrum of dislocation number fluc-
tuations, obtaining results in agreement with our simula-
tions. While we have not performed extensive tests in three
dimensional systems, our stochastic model seems to remain
valid despite the more complex defect structures admissible
in three dimensions.
Sheared phase-field crystal.—We use the phase-field

crystal (PFC) model to study intermittent plastic deforma-
tion in single crystals. The PFC model describes the
evolution of an order parameter field ψðr; tÞ that is related
to the particle number density averaged over atomic
vibration time scales, i.e., ψ ∼ hPiδðr − riÞit. An effective
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Swift-Hohenberg free-energy functional is formulated in
the lowest order gradient expansion of ψ field and given as
[12] Ffψg ¼ R

dr½1
2
ψðq20 þ∇2Þ2ψ þ r

2
ψ2 þ 1

4
ψ4�, where

r ∼ ðT − TcÞ=Tc < 0 is the quenching depth parameter
related to the deviation from the critical melting temperature,
and q0 ¼ 2π=a with a being the equilibrium lattice spacing.
The equilibrium phase diagram obtained from the free
energy Ffψg contains a region in the (r, ψ0) space where
the system relaxes to a spatially periodic ψ field around a
mean crystal density ψ0, that corresponds to a crystalline
phase with triangular symmetry in two dimensions [12].
The dynamics of the ψ field that includes both the

diffusive timescale of phase transformation and elastic
strain relaxation is given by a damped wave equation [18]

∂2ψ

∂t2 þ β
∂ψ
∂t ¼ −∇ · J; ð1Þ

where the density current has a diffusive part determined by
the free energy F and an advective part that simulates the
strain rate boundary conditions, namely, J ¼ −α2∇ðδF=
δψÞ þ βvψ , where α2 is the diffusivity coefficient and β is
the overdamped coefficient. Physically, these two param-
eters are related to the effective sound speed and vacancy
diffusion coefficient that set a finite elastic interaction
length L� and time t� [19]. Their values are constrained by
the thermodynamic stability of the crystalline phase and the
damping rate of the elastic excitations. From a linear
stability analysis around the one-mode approximation
solution of ψ , the dispersion relation corresponding to
Eq. (1) with v ¼ 0 describes a pair of density waves that
propagate undamped for a time t� ≈ 2β−1 over a length
scale L� ≈ vefft�, with an effective wave speed
veff ≈ 2α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ψ2

0 þ rþ q40 þ 9A2
0=8

p
, where A0 ¼ 4=5ðψ0 þ

1=3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−15r − 36ψ2

0

p
Þ is the amplitude of ψ in the one-mode

approximation [19]. For time scales t > t�, the density
disturbance propagates diffusively with a vacancy diffusion
coefficient D0 ¼ α2ð3ρ2 þ rþ q40 þ 9A2

0=8Þ=β. The model
parameters are chosen such that the time scale t� of strain
wave relaxation is much smaller than the diffusion one.
We impose a constant strain rate boundary condition
similar to that used in Ref. [20]. The velocity field v ¼
(vxðyÞ; 0) acts effectively only on a small strip on the top
and bottom boundaries,

vxðyÞ ¼ v0e−ðL−y=λÞH
�
y −

L
2

�
− v0e−ðy=λÞH

�
L
2
− y

�
;

ð2Þ

where HðxÞ is the Heaviside step function and the
penetration length λ of the imposed shear velocity is
chosen to be much smaller than the system size L.
We solve Eq. (1) numerically on a two-dimensional

rectangular L × L domain of size 512dx × 512dx, using

both a finite difference method with an isotropic discreti-
zation of the gradients and the Laplace operator [21] as well
as a spectral method utilizing discrete cosine transforms
similar to that in Ref. [22]. In the spectral method
implementation, we added a conservative, Gaussian noise
term to Eq. (1) to enable dislocation nucleation in the
regime of low dislocation density [23]. Regardless of the
noise term or numerical implementation, we observe robust
statistical properties. The discretization parameters are
set to dt ¼ 0.015, dx ¼ 1, and a ¼ 2π. The boundary
conditions are periodic in the x direction and with zero flux
in the y direction at 0 and L. As an initial condition, we use
the relaxed equilibrium solution of a single crystal at a fixed
undercooling depth r ¼ −0.5 and ψ0 ¼ 0.3. The damping
coefficient is set to β ¼ 0.5 and the diffusivity parameter
α ¼ 15. These parameter values give a typical wave speed
of veff ≈ 36, an elastic interaction length L� ≈ 146, and a
characteristic damping time t� ≈ 4. We set λ¼ 0.05L<L�;
thus, the strain waves propagate deeper into the bulk of the
crystal before they are dissipated. However, in a constant
strain-rate experiment, the imposed shear rate should be
sufficiently slow such that the elastic waves decay almost
“instantaneously.” Under these conditions, we vary the
imposed shear velocity between v0 ≈ 4.3–8.4, that corre-
sponds to an applied strain rate varying between _ϵ0 ¼
λv0=ð2L2Þ ≈ 2.10–4.10 × 10−4 in arbitrary time units.
Dislocation density fluctuations.—Plastic deformations

induce vacancies and point topological defects that are
represented by phase and amplitude modulations in the ψ
field. These defects are harder to locate and track accurately
from the crystal density field. Instead, we use a more
atomistic approach of tracking the atoms neighboring
different point defects. For a perfect fcc lattice in two
dimensions, each PFC atom (located as a minimum in the ψ
field) is surrounded by 6 nearest neighbors, but near a point
defect the coordination number is different. Defect atoms
with coordination number 5 or 7 are associated with
disclinations, and typically pair up to form a dislocation
as illustrated in Fig. 1.
We focus on the interaction and dynamics of dislocations

which are defined as pairs of five- and sevenfold defect
atoms. The number of dislocations varies with the system
size and the applied strain rate, and, for our parameter values,
it is up to Oð102Þ. For a given strain rate, the dislocation
density is both highly heterogeneous in space and inter-
mittent in time. The spatial density of dislocations varies
from dilute configuration of single, fast-moving dislocations
to denser configurations of dislocation pileups that slowly
sweep across the sheared crystal [see Figs. 1(a)–1(b)]. The
trajectories of isolated dislocations follow the slip planes at
fast speeds, in contrast to the slow motion of correlated
dislocations [see Figs. 1(c)–1(d)]. The alternations between
configurations of fast and slow moving dislocations result in
sporadic fluctuations of the plastic strain rate that is related to
the global dislocation velocity. Reference [20] studied the
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avalanche statistics of the global strain rate signal showing
that the power-law exponent of the energy dissipated during
avalanches is in agreement with that predicted near a
depinning transition in the mean field approximation.
Here we study instead the nontrivial statistical properties
of the dislocation density fluctuations. A detail analysis of
the relation between the statistics of number fluctuations and
a depinning phase transition is the subject of a separate study.
We observe that sudden dislocation reactions (annihila-

tions or creations) occur at irregular times between isolated
dislocations or between an isolated dislocation and a domain
wall. The latter event may lead to the breaking up of the
domain wall and the release of fast-moving dislocations
along different gliding planes. The total dislocation number
Nd is a highly fluctuating quantity depending on the imposed
shear rate, such that, at low strain rates, it is characterized by
temporal variations around a mean set by the external driving
interspersed with short episodes of almost dislocation
extinction, as seen in Fig. 2. For _ϵ0 < 2.00 × 10−4, keeping
the same values for the other parameters, we observe that the
vanishing dislocation density becomes an absorbing state
after an initial transient time of fluctuations. In this dynamical
regime, the crystal has been rotated such that the stored
energy is mainly dissipated by viscoelastic deformation
without the nucleation of defects.
In Fig. 3, we show the power spectrum SðfÞ ¼ hjN̂dj2i,

where N̂d is the Fourier transform of Nd, computed from
the time signals illustrated in Fig. 2. The power spectrum

has a power-law decay at high frequencies f given byC=f2.
To test that this scaling behavior arises of the density
fluctuations from correlated events, we have measured the
dependence of the scaling coefficient C on hNdi shown in
the inset of Fig. 3. For low shear rates corresponding a
dilute dislocation density, the coefficient exhibits a linear
scaling, that is consistent with uncorrelated, random dis-
location reactions. At higher shear rates, the dependence
changes to a power law implying that the signal arises from
correlated dislocation dynamics.
For each constant shear rate _ϵ0, we also measure the

probability distribution function (PDF) of the distribution
number as shown in Fig. 4. At low _ϵ0’s, the PDF PðNdÞ is
bimodal with one peak near zero corresponding to the
frequency of dislocation extinctions and the other peak
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FIG. 2. Temporal fluctuations in the dislocation number for
different strain rates. From (a) to (d) the strain rate increases as
2.78 × 10−4, 3.02 × 10−4, 3.41 × 104, and 3.90 × 10−4.
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FIG. 1 (color online). Different dislocation configurations in the
Voronoi diagram [panels (a) and (b)] corresponding to a crystal
that is sheared at constant rate _ϵ0 ¼ 3 × 10−4 s−1. Dislocations are
represented as pairs of five- and sevenfold defect atoms shown in
red and blue. The trajectories of these dislocations are depicted
(random coloring) in the bottom panels, (c) for a dilute configu-
ration of dislocations and (d) for a more dense distribution of
dislocations organized into a wall sweeping across the system.
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FIG. 3 (color online). Power spectrum of the dislocation
number fluctuations Nd vs frequency f for different strain rates.
The red line shows the prediction of the stochastic model Eq. (4),
varying as C=f2 for large f. The inset shows the dependence of
C on the mean dislocation number. The error bars in the inset are
given along the principal axes of the variation over multiple
simulations of the mean of Nd and C.
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centered around a mean value imposed by the external
shear rate. At higher values of _ϵ0, the probability that the
dislocation number drops to zero becomes vanishingly
small, and approaches a unimodal form with the peak
shifting to the right as the driving force is increased.

_ϵ0 2.78 × 10−4 3.02 × 10−4 3.41 × 104 3.90 × 10−4

k 0.31 0.62 2.67 3.20
D 0.09 0.09 0.18 0.12
m 26.01 28.08 29.08 31.15

Stochastic model.—The 1=f2 signal signature leads us to
adopt a stochastic approach for the description of the
dynamics of mobile dislocations initially proposed by
Hähner [15,16] to describe dislocation cell formation and
fractal patterning during various plastic deformation
regimes. The basic idea is that the intrinsic stress and
strain-rate fluctuations, arising from long-range interactions
between dislocations, may lead to noise-induced nonequili-
brium phase transitions corresponding to different plastic
deformation regimes and dislocation patterning. The micro-
scopic details of dislocation interactions are neglected and
effectively replaced by a stochastic contribution to the mean
field. Thus, one can write a general evolution equation of
the dislocation density ρd ¼ Nd=V, where V is the crystal
volume in which dislocations are embedded, as

_ρd ¼ Rðρd; _ϵÞ; ð3Þ

where dislocation reactions depend on the strain-rate _ϵ and
the defect density ρd. We decompose the strain rate into a
deterministic part related to the external driving and a
stochastic part related to dislocation interactions,
_ϵ ¼ h_ϵi þ δ_ϵ. The simplest assumption is that all reactions
rate depend linearly on the stochastic strain rate, so that
Eq. (3) reduces to a Langevin equation of the form

_ρd ¼ Fðρd; h_ϵiÞ þ GðρdÞδ_ϵ; ð4Þ

where Fðρd; h_ϵiÞ describes the deterministic reaction rates
depending on the current dislocation density and the mean
strain rate, while GðρdÞ models the stochastic reaction rate
due to mutual dislocation interactions depending on the
density ρd. The strain-rate fluctuations δ_ϵðtÞ are approxi-
mated by a Gaussian white noise with zero mean and
covariance hδ_ϵðtÞδ_ϵðt0Þi ¼ 2Dδðt − t0Þ, while the noise
amplitude

ffiffiffiffi
D

p
measures the effective contribution of dis-

location interactions. Thewhite noise limit is taken under the
approximation that the strain-rate fluctuations are typically
short ranged compared to the time scale of dislocation
evolution and patterning [15]. The probability distribution
function of dislocation density PðρdÞ follows from Eq. (4)
as the steady state solution of the Fokker-Planck equation
in the Stratonovich formulation with natural boundary
conditions and given as

PðρdÞ ¼
N

GðρdÞ
exp

�Z
ρd

0

dx
FðρÞ

DG2ðρÞ
�
; ð5Þ

where N −1¼ R∞
0 dρdG−1ðρdÞexpð

R ρd
0 dρfðρÞD−1G−2ðρÞÞ

is the normalization constant. We assume that the determin-
istic part of the dislocation reactions is driven by a potential
field, i.e., FðρdÞ ¼ −U0ðρdÞ, that is approximated to the
lowest order by a double-well potential UðρdÞ ¼
1
4
(ðρd=mÞ − 1)4 − 1

2
(ðρd=mÞ − 1)2 − κ(ðρd=mÞ − 1), with

the two minima corresponding to zero density and a mean
density related to the mean strain rate. Thus, the scaling
parameter m locates the mean density that increases mono-
tonically with the shear rate _ϵ0 (also seen from the table in
Fig. 4). κ is a parameter that also increases with _ϵ0 and favors
a finite mean density. As κ → 0, dislocation extinction
events and a finite population of interacting dislocations
both occur with nonzero probabilities. The noise intensity in
Eq. (4) depends on the dislocation density, such that it is
able to simulate the internal interactions between disloca-
tions. To this end, we assume a linear relationship given by
GðρdÞ ¼ 1þ ρd=m. With these specific expressions of the
reaction rates, we find that the PDF of ρd given generically
by Eq. (5) becomes equal to

PðρdÞ ¼ N
�
1þ ρd

m

�
−1−11=D

exp

�
−
LðρdÞ
2D

�
; ð6Þ

where L ¼ ρd=m2ðmþ ρdÞðρ2d − 9mρd − 2m2κ − 22m2Þ.
The stationary distribution of this simple stochastic model
of dislocation reactions captures very well the empirical PDF
obtained from the phase-field crystal simulations as seen in
Fig. 4. We have also verified numerically that our stochastic
model is able to reproduce the 1=f2 spectral density of
number fluctuations. An analytical calculation of the high-
frequency limit of the power-spectrum using the results of
Refs. [24–26] is given in the Supplemental Material [27].
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FIG. 4 (color online). Probability distribution function of
dislocation density fluctuations corresponding to PFC single
crystals sheared at different shear rates. The continuous lines
represent the stationary probability distributions predicted by the
stochastic model of dislocation number fluctuations from Eq. (6).
Numerical values of the model fitting parameters are tabulated
below.
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There we show that the correlation function CðtÞ ¼
hρdð0ÞρdðtÞi can be calculated in general as a power
series of the form CðtÞ ¼ P∞

n¼0 (ð−tÞn=n!)hxðO†Þnxi,
where O† ¼ −½F þDG0G�∂=∂ρd −DG2ð∂2=∂ρ2dÞ is the
adjoint Kolmogorov operator corresponding to Eq. (4).
Hence, the large f limit of the power spectrum SðfÞ ¼
2ℜfR∞

0 dte−2πiftCðtÞg is dominated by the first nonzero
term in the expansion and given as SðfÞ ≈
hρdO†ρdif−2, where hρdO†ρdi ¼ −hρd½F þDG0G�i is
determined by the first four moments of the steady state
PðρdÞ. Thus, the high frequency power spectrum is propor-
tional to 1=f2, with the proportionality constant depending
on the mean density and higher moments, a result that is
expected to be robust in higher dimensions and testable in
experiment.
In conclusion, by using the phase field crystal model, we

showed that number fluctuations of dislocations follow
non-Gaussian statistics with a 1=f2 power spectrum similar
to that of strain rate fluctuations. This behavior arises from
correlated dislocation reactions, and can be accurately
captured by a stochastic model which makes experimen-
tally testable predictions for the probability distribution of
defect numbers as a function of shear rate.
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