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Spatiotemporal splitting events of drift wave (DW) eigenmodes due to nonlinear coupling are
investigated in a cylindrical helicon plasma device. DW eigenmodes in the radial-azimuthal cross section
have been experimentally observed to split at radial locations and recombine into the global eigenmode
with a time shorter than the typical DW period (t ≪ f−1DW). The number of splits correlates with the increase
of turbulence. The observed dynamics can be theoretically reproduced by a Kuramoto-type model of a
network of radially coupled azimuthal eigenmodes. Coupling by E × B—vortex convection cell dynamics
and ion gyro radii motion leads to cross-field synchronization and occasional mode splitting events.
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Nonlinear coupling leads to complex dynamics like
synchronization, chaos, and broadband turbulence in fluids
and plasmas. In magnetized plasmas the pressure-gradient-
driven drift wave (DW) instability is a paradigm for
nonlinear mode-mode coupling. Nonlinearly generated
DW vortices lead to cross-field transport and plasma
turbulence [1,2]. Because of energy transfer via inverse
cascades by quasi-2D dynamics [3], large scale structures
can be formed out of turbulence [4,5]. Global eigenmode
formation is common not only in plasma physics, but also
in quasi-2D fluid dynamical systems with an axis of
rotational symmetry [6]. A detailed understanding of the
development of coherent structures out of an underlying
instability is of fundamental interest in self-organization [7]
and pattern formation [8].
Experiments in cylindrical geometry have long been

used to study the DW and the transition to turbulence
[9–13]. Depending on operation parameters and boundary
conditions, coherent eigenmodes, nonlinearly coupled
modes, and broadband turbulence can all be observed
[14–17]. This Letter reports experimental observations of
spatiotemporal mode splitting of “global,” i.e., spatially
extended coherent, DW eigenmodes and a theoretical
model that reproduces this phenomenon. With increasing
turbulent dynamics, the global eigenmodes more frequently
shear apart for a time interval t ≪ f−1DW. Standard models of
DWs (e.g., Hasegawa-Wakatani) are unable to predict or
explain these mode splitting events. The quasistability of
the global mode structure can be understood by an
ensemble of nonlinearly coupled eigenmodes. A standard
Kuramoto-type model of coupled oscillators [18,19] is
modified by adding both self- and mutual-mode coupling.
The basic plasma physics is incorporated through the
nonlinear coupling terms, which are calculated from

experimentally measured local DW dispersion relations
and modeled E × B—vortex dynamics. Cross-field syn-
chronization leads to the formation of quasistable global
eigenmodes that undergo mode splitting events via phase
slippages.
The experiments were performed in the cylindrical

CSDX device [13] (length 2.8 m, radius 0.1 m) which
produces a sharply peaked [20] magnetized argon plasma
using an m ¼ 0 helicon antenna (radius 7.5 cm). Typical
operating parameters are 1.6 kW rf input power and gas
pressure of 0.42 Pa. Radially movable multitip Langmuir
probes [21] are used to measure radial profiles of standard
plasma parameters and vorticity [22]. The intensity of
visible light in the azimuthal cross section is measured by a
Phantom V710 high speed camera using filters for
detecting emission from neutrals and ions [23]. The focal
plane is imaged by a telescope setup onto the camera chip
[depth of field (DOF) ∼10 cm, parallax < 0.5°] [23,24].
~E × B—vorticity fluctuations ( ~Ω ¼ ∇ × ~vE×B) are mea-
sured with a 3 × 3 probe array [21] and are associated
with light intensity fluctuations (zero-lag correlation values
of ≈0.5–0.8). Light fluctuations represent the dynamics of
density fluctuations [25] and the dynamics of ~E × B
vorticity [26].
In the studied magnetic field range of B ¼ 40–240 mT,

the pressure driven DW instability dominates the dynamics
in the density gradient region (r ¼ 1–6 cm) [24] with
ωDW < k∥vTe

. Azimuthal FFT decomposition of the cam-
era images is used to obtain azimuthal eigenmodes [27–37].
Radial profiles of the light fluctuation amplitude and
the azimuthal angle (phase) are mode-selectively extracted
to study the temporal evolution of the 2D structure
of eigenmodes. In weakly developed turbulence (at
B ¼ 90 mT), global eigenmodes propagate and split
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occasionally in time intervals < 0.2f−1DW. In CSDX, for
these parameters, the eigenmodesm ¼ 1; 2; 3 are dominant
[13,38,39]. For example, we show the dynamics of the
m ¼ 2mode (a similar dynamics is observed form ¼ 1 and
m ¼ 3). Figure 1 shows a clockwise-propagating m ¼ 2
mode as it undergoes a radial mode splitting event. At t ¼ 0
the mode structure is globally coherent [Figs. 1(a) and
1(b)]. Within a quarter period, the mode structure under-
goes a complete split and recombination: at a radius of
r ∼ 2 cm, the inner mode structure propagates slightly
backwards (t ¼ 19 μs) and splits at t ¼ 38 μs while the
outer mode continues its propagation. Eventually the inner
and outer eigenmode structures recombine [Figs. 1(g) and
1(h)]. Mode splitting is observed at various radii; however,
the events are predominantly observed close to the core and
in the edge region. In Figs. 1(d) and 1(f) mode splits happen
at r ∼ 1 cm and at r ∼ 6 cm. Figure 2 illustrates the
temporal evolution of azimuthal phases at two slightly
different radial positions. According to the propagation of

the mode structure, the azimuthal phases increase in time
for both positions [Fig. 2(a)] with an angular velocity
according to the Doppler-shifted electron diamagnetic drift
at each radius. The velocity ∂tθ is not constant in time,
however, and the phase difference between two radially
separated eigenmodes [Fig. 2(b)] reveals discrete steps of
2π known as phase slippages. With the definition Δθ ¼
θðr2Þ − θðr1Þ (with r2 > r1), phase slippages are predomi-
nantly positive close to the core region and negative in the
edge region. Figures 2(c) and 2(d) show a detailed time
interval with three typical phase slippages. Sometimes a
slippage starts to evolve but then the phase difference is
pulled back [Fig. 2(d)]. In the following we call such events
“phase pulling.” The mode amplitudes (∼vorticity)
decrease at both radial positions during phase slippages
and phase pulling [Fig. 2(e)]. Figure 3 compares the
dynamics of phase slippages and phase pulling. For phase
pulling the outer mode starts to accelerate and the inner
mode follows with a time lag of τ ∼ 10 μs. This behavior
results in a temporary nonzero phase difference [Figs. 3(a)
and 3(b)] and velocity increase for the outer and inner
modes [Fig. 3(c)]. For phase slippages, the modes accel-
erate in opposite directions [Fig. 3(f)]. One mode accel-
erates until the phase difference again becomes small
(passing through 2π) and then decelerates (the other first
decelerates and then accelerates). After the phase slippage
both modes again propagate with the same velocity.
The effective frequency of uncoupled DWs corresponds

to the E × B-Doppler-shifted electron diamagnetic
drift [3] ωðr;mÞ ¼ ω�ðr;mÞ þmωE×BðrÞ, with ω� ¼
−kBTek⊥ðeBð1þ k2⊥ρ2s ÞÞ−1ð∂r ln ne þ ∂r lnTeÞ, kB being
the Boltzmann constant, TeðrÞ the electron temperature, e
the elementary charge, B the magnetic induction, ρs ¼
fmiTe=ðeB2Þg1=2 the drift scale, mi the ion mass,
k⊥ðr;mÞ ¼ m=r the perpendicular wave number, neðrÞ
the density, and ωE×B ¼ −ðBrÞ−1∂rϕðrÞ and ϕðrÞ
the plasma potential. The radial profiles of ωðr;mÞ
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FIG. 1 (color online). Temporal evolution of a mode splitting
event of an m ¼ 2 mode (fDW ∼ 4.9 kHz, B ¼ 90 mT). The
bottom row shows the mode structure normalized to the azimu-
thal mode amplitude for each radius to visualize mode splits in
low amplitude regions.
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FIG. 2 (color online). Temporal evolution of (a) the azimuthal
phases of an m ¼ 2 mode at two different radii and (b) the
difference θ2 − θ1. Diagrams (c) and (d) show an enlarged part of
the time traces of diagrams (a) and (b), and (e) shows the mode
amplitude. In diagrams (a) and (c) initial phases are set to
θ1 ¼ θ2 ¼ 0 (r1 ¼ 2.0 cm, r2 ¼ 2.6 cm).

θ /
(2

π ) (a)

0

1

Δθ
/(

2π
)

(b)
0

0.3

time (ms)

∂ tθ /
(2

π /
m

s) (c)

−0.2 −0.1 0 0.1 0.2
0

10
20

θ /
(2

π ) (d)

0

1

Δθ
/(

2π
)

(e)
0

1

time (ms)

∂ tθ /
(2

π /
m

s) (f)

−0.2 −0.1 0 0.1 0.2

−20
0

20

FIG. 3 (color online). Temporal evolution of the phase (top
panels), phase difference (center panels), and phase velocity
(bottom panels) of an m ¼ 2 mode at two different radii for
phase pulling (left panels) and a phase slippage (right panels).
r2 > r1, r1: blue circles, r2: red squares.
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[Fig. 4(a)] are obtained from experimentally measured
radial profiles of ne, ϕ, and Te [24].
In the following the phase dynamics of global eigenm-

odes is modeled by a network of Kuramoto-type phase-
coupled azimuthal eigenmodes (oscillators) [18]. For each
mode number m, a radial set of N (here N ¼ 100) radially
coupled azimuthal eigenmodes is considered. The temporal
evolution of the azimuthal phase θmi at a radial position ri
(1 ≤ i ≤ N) is given by

∂θmi

∂t ¼ ωmi þ
XM

l¼1

XN

j≠i
Kmi;lj sinðθlj − θmiÞ; ð1Þ

with ωmi being the eigenfrequency of the ith oscillator of
mode m and Kmi;lj the coupling strength between the jth
oscillator of mode l and the ith oscillator of mode m. The
sum of index j is the contribution of radial coupling from
mode l (summed over M eigenmodes) at position rj to
mode m at ri. For l ¼ m the coupling matrix Kmi;lj
describes the radial self-coupling of an eigenmode, and
for l ≠ m it represents mutual mode coupling. The eigen-
frequencies ωmi are calculated from the experimentally
measured DW dispersion ωðr;mÞ [Fig. 4(a)]. It is assumed
that the qualitative structure of the radial coupling matrices
is the same for self-coupling and for mode-mode coupling.
The matrices differ only by a constant factor Aml, i.e.,
Kmi;lj ¼ AmlKij (caused by the larger overlap of a mode
with itself; we assume Am¼l > Am≠l).

The underlying physics is included in the coupling
coefficient matrix Kij. Significant coupling of azimuthal
eigenmodes results from cross-field drifts and ion gyration.
We include E × B—vortex coupling (Vij) and ion gyro
radius coupling (Gij) with Kij ¼ ðVij þ GijÞðrj=riÞ, where
rj=ri considers the circumference ratio of azimuthal
eigenmodes. (Coupling due to the ion polarization drift
is neglected in this model since jvE×Bj=jvpol;ij∼
ωci=ωDW ≫ 1.) The potential perturbation corresponding
to a DW creates cross-field plasma transport by E × B—
vortex dynamics. Consequently, azimuthal DW eigenmo-
des at different radii are mutually interacting by cross-field
plasma flows. According to the observed correlation
between decrease of vorticity (∼E × B coupling) and phase
slippages [Fig. 2(e)], it is assumed that the coupling
strength scales with vorticity. Figure 4(b) shows a simple
illustration of how Vij is calculated. As a measure for the
coupling strength from an oscillator at rj to an oscillator at
ri, the particle flux within the vortex from rj to ri is
calculated within the red trajectories of Fig. 4(b). The
coupling matrix is calculated by Vij ¼

R
Γn;je−tij=τdσ,

where Γn;j ¼ ~nðrjÞ · ~vE×BðρÞ, with ~nðrjÞ being the density
fluctuations at radius rj and ~vE×BðρÞ the vortex velocity at
the distance ρ from the vortex center. The time the plasma
element takes to travel from rj to ri is tij ∼ lij= ~vE×B, where
lij is the length along the trajectory. The lifetime of a
perturbation is assumed to be τ ∼ ρs=vth;i (about 50 μs in
the model), with vth;i being the thermal ion velocity. The ion
gyro radius rci is of the order of ∼0.5 cm for T i ∼ 0.4 eV
[40]. Ion gyro radius coupling from rj to ri is assumed to be
proportional to the ion flux, i.e., Gij ¼ nðrjÞvth;i sinðαÞ,
with α ¼ arccosðjri − rjj=rciÞ being the angle between the
ion trajectory centered at rj and the oscillator plane at ri.
The corresponding coupling matrix is depicted in Fig. 5(a).
E × B—vortex coupling results in the flat pattern spread
across the whole radial range. The structure around ri ∼ rj
is from ion gyro radius coupling exhibiting a short effective
coupling range of ∼rci.
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FIG. 4 (color online). (a) Doppler-shifted dispersion relation
f ¼ ωðr; mÞ=ð2πÞ from measured average profiles of ϕ, ne, and
Te. (b) E × B—vortex coupling model. ρ: radial coordinate of the
vortex, ϕvðρÞ: vortex potential profile, dσ: part of the secant
(green lines) of the radial oscillator at rj.
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FIG. 6 (color online). Cross-sectional dynamics of the m ¼ 2
mode modeled by a Kuramoto model including two coupled
modes (m ¼ 1; 2). The bottom row shows the mode structure
normalized to the azimuthal mode amplitude for each radius to
visualize mode splits in low amplitude regions.
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Comparing Fig. 4(a) with Fig. 5(b) shows the importance
of the coupling terms. Figure 5(b) depicts the averaged
phase velocities of the m ¼ 2 mode for different coupling
strengths. Without coupling, the model reflects only the
eigenfrequencies ωðr;mÞ. With nonzero coupling coeffi-
cients, radially extended regions of equal phase velocity are
formed. Measurements of radial profiles of density and
potential fluctuations show similarly extended regions of
constant frequency [24]. The larger the coupling strength,
the broader the phase-synchronized regions become.
According to the Doppler-shifted dispersion relation
[Fig. 4(a)] of uncoupled DW modes, no stable global
eigenmodes would form. However, the mutual synchroni-
zation of azimuthal eigenmodes at different radii results in
the formation of global azimuthal eigenmodes.
This is the first model which can reproduce the observed

eigenmode splitting events shown in Fig. 1. Figure 6
depicts the phase dynamics of the m ¼ 2 mode obtained
from the Kuramoto model, including self-coupling and
mutual mode coupling between the modes m ¼ 1; 2; 3.
The radial amplitude dependence is taken to be the
average experimental amplitude profile. The model shows

the formation of global radial-azimuthal eigenmodes
[Fig. 6(a) shows the m ¼ 2 mode] due to synchronization
through cross-field radial coupling. Similar to the exper-
imental observations in Fig. 1, mode splits of the global
mode frequently occur at outer radii [Figs. 6(a) and 6(b)]
and inner radii [Figs. 6(e) and 6(f)]. After a mode split the
mode structure recombines to the global eigenmode
[Figs. 6(g) and 6(h)].
Figure 7 shows modeled phase traces from nearby radial

locations, demonstrating a phase pulling and a phase
slippage event. The modeled phase traces are highly similar
to those obtained from measurement [Fig. 3]. The details of
both phase pulling events and phase slippages are repro-
duced [compare Figs. 7(b) and 7(e) with Figs. 3(b)
and 3(e)] and the phase velocities agree qualitatively
and quantitatively [compare Figs. 7(c) and 7(f) with
Figs. 3(c) and 3(f)].
Experimental results show that the mode split dynamics

correlate with increasing turbulence [Fig. 8]. In weakly
developed turbulence [Figs. 8(a) and 8(d)] mode splits
mostly occur in the core and edge regions. With increasing
turbulent dynamics (increasing B) the number of mode
splits increase temporally and spatially [Figs. 8(b), 8(c),
8(e), and 8(f)].
Signatures of mode splits were first anticipated in

Ref. [27]; however, because of the strong parallax in that
experiment, it could not be unambiguously verified and
studied. Moreover since the radial and axial motion could
not be decoupled clearly, the effect of radial coupling was
not found. Comparison of a Kuramoto-type phase coupling
model with experimental observations suggests that radial
cross-field coupling is essential for the formation of global
DW eigenmodes. The model predicts the detailed phase
dynamics of mode splitting events. Experiments indicate
that mode splits are correlated with turbulence. Cross-
field coupling via E × B—vortex dynamics may also occur
in poloidal-toroidal DW eigenmodes in toroidal confine-
ment devices. Vortex dynamics may, in general, result in
long-range cross-field coupling and can often play a
significant role in pattern formation, synchronization,
and self-organization independent of geometry.

This work was supported by U.S. DOE Grants No. DE-
FG02-07ER54912, No. DE-FG02-OER54871, and
No. DE-SC0008378.
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