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Toroidal modes in the form of so-called Hopfions, with two independent winding numbers, a hidden one
(twist s), which characterizes a circular vortex thread embedded into a three-dimensional soliton, and the
vorticity around the vertical axis (m), appear in many fields, including field theory, ferromagnetics, and
semi- and superconductors. Such topological states are normally generated in multicomponent systems, or
as trapped quasilinear modes in toroidal potentials. We uncover that stable solitons with this structure can
be created, without any linear potential, in the single-component setting with the strength of repulsive
nonlinearity growing fast enough from the center to the periphery, for both steep and smooth modulation
profiles. Toroidal modes with s = 1 and vorticity m = 0, 1, 2 are produced. They are stable for m < 1, and
do not exist for s > 1. An approximate analytical solution is obtained for the twisted ring with s = 1,
m = 0. Under the application of an external torque, it rotates like a solid ring. The setting can be
implemented in a Bose-Einstein condensate (BEC) by means of the Feshbach resonance controlled by
inhomogeneous magnetic fields.
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A fundamental topic in many fields of physics is the
creation of three-dimensional (3D) self-trapped nonlinear
modes (solitons). The ramifications of this topic are well
known in optics [1], Bose-Einstein condensates (BECs)
[2,3], ferromagnetics [4], superconductors [5], semicon-
ductors [6], nuclear matter [7], and field theory [8—10].
Self-attractive nonlinearity is usually needed for the for-
mation of localized states. This causes a major problem, as
attractive cubic nonlinearities cause the collapse of multi-
dimensional solitons [11] and azimuthal instabilities of
ring-shaped vortices [12].

Fundamental and vortical 3D solitons can be stabilized
by lattice potentials [1,13]. 3D objects may also be stable in
nonlocal nonlinear media [14]. Spin-orbit interactions in
BECs may stabilize 2D solitons in free space [15]. On the
other hand, nonlinear pseudopotentials, induced by peri-
odic modulation of the local strength of the nonlinearity, do
not stabilize 3D solitons. Stabilization of 2D states has been
shown in pseudopotentials whose shapes feature sharp
edges [16].

A completely different approach to the problem was
proposed in Refs. [17-19], where it was shown that
repulsive spatially inhomogeneous nonlinearity, with
the local strength o(p) growing as a function of radial
variable p faster than p?, creates stable fundamental- and
vortex-soliton states. In BEC, the required spatial modu-
lation of the nonlinearity strength may be induced by
means of suitable Feshbach resonances (FRs) [20-23]

0031-9007/14/113(26)/264101(5)

264101-1

controlled by inhomogeneous magnetic [24-26] or laser
[27] fields (necessary physical conditions for that are
considered below).

In the 3D geometry, a challenge is to construct stable
vortex-soliton states with complex structures, such as
Skyrmions and Hopfions, which carry two independent
winding numbers. The aim of this Letter is to show that an
apparently simple isotropic model with a single wave
function generates 3D solitons in the form of stable vortex
rings with internal twist. For these solitons, the phase of the
wave function changes both along and around the vortex
ring, with the corresponding topological invariant (linking
number), which is defined as the product of two integers:
the number of twists (s) and overall vorticity (m). Since this
arrangement is typical for solitons of the Faddeev-Skyrme
model (FSM) [10,28-30], with the triplet of real scalar
fields realizing the Hopf map, ¢:R3 — 52, such states are
called Hopfions. So far, Hopfions have been found only in
systems with multicomponent wave functions [8,31]. Here
we show, for the first time to our knowledge, that the usual
matter-wave model, based on the single Gross-Pitaevskii
equation (GPE), with 6(p) growing as said above, gives rise
to several species (including stable ones) of twisted vortex
rings with two independent winding numbers.

The GPE for the scaled wave function g(x,y,z,1) is
written in the Cartesian coordinates x, y, z and normalized
time ¢,

© 2014 American Physical Society


http://dx.doi.org/10.1103/PhysRevLett.113.264101
http://dx.doi.org/10.1103/PhysRevLett.113.264101
http://dx.doi.org/10.1103/PhysRevLett.113.264101
http://dx.doi.org/10.1103/PhysRevLett.113.264101

PRL 113, 264101 (2014)

PHYSICAL REVIEW LETTERS

week ending
31 DECEMBER 2014

iq, = —(1/2) (qxx + Gyy + q22) +0(p)lgl*q. (1)

where p? =x?> +y>+z?> and the local strength of the
repulsive nonlinearity ¢(p) > 0 must grow faster than p?,
to secure the convergence of the norm N = [ lq|*dxdydz.

The required FR-modulation profile may be imposed by a
magnetic pattern which provides for the exact FR at
p — oo (in fact, at a relatively large finite value of p, which
is sufficient as the respective solitons are strongly localized
[17-19]), e.g., Hpg = 402 G and 735 G for *°K [20] and "Li
[21], respectively. Using crossed fields induced by barrel-
shaped solenoids with trapped magnetic flux ®, whose radii
vary along p (realized here as the coordinate running along
the solenoid’s axis) as R?>=3'2®/(zHpg) +const/c(p)
[32], one may construct the required approximately isotropic
pattern. It can be created in a more accurate form by means
of recently developed techniques, namely, magnetic lattices
[24-26], field concentrators [33], and current circuitry
integrated with the trap [34]. An estimate for the Li
BEC, where the FR was studied in detail [21], suggests
that the present system may be realized with magnetic-field
gradients ~10 T/m. Very recent work demonstrates that
gradients of this order of magnitude become available [34].

Here we present numerical and analytical results
for the model with a steep anti-Gaussian modulation
o =exp(p?/2), and for a smooth power-law profile
6 = 1 + p®. The former choice makes it possible to display
the results in the most compact form, while the latter one
demonstrates that the findings are generic, being valid for
all modulation formats subject to the above-mentioned
condition, p*/o(p) — 0 at p — co. Note that the vanishing
of the wave function at p — oo provides for a possibility of
the one-point compactification of the boundary R* — S°.
Then, the subsequent map onto the target space represents
the Hopf fibration [35] in the present setting.

Because Eq. (1) does not include any trapping potential,
all the self-trapped modes presented below are nonlinear
states, which do not bifurcate from eigenmodes of any
linear model. In this connection, it is relevant to mention
that twisted toroidal vortices may exist as linear modes in
torus-shaped trapping potentials. In the latter case, the
addition of repulsive nonlinearity leads to deformation of
the trapped vortical rings, without a qualitative change in
their shape [36].

Using cylindrical coordinates (r,¢,z), we seek sta-
tionary solutions of Eq. (1) with integer vorticity m and
chemical potential u as g = w(r, z) exp(ime) exp(—iut),
where the amplitude function obeys the stationary GPE,

uw = —(1/2) (W, + rw, —m?r 2w + w_)w

+o(r, 2)|w|*w. (2)

In contrast with the usual vortex rings featuring the
single winding number m in the (x,y) plane, here the

complex amplitude function, w(r,z)=w,(r,z) + iw;(r,z),
accounts for the second winding number (twist) s in the
(r,z) plane. This implies a structure in the form of a
toroidal twisted vortex tube, nested in the 3D soliton and
coiling up around the z axis; see examples in Figs. 1 and 2.
Angular momentum M of such states is linked to the norm
as for usual vortices with s = 0, i.e., M = mN.

Counterparts of w, and w; in the FSM are two compo-
nents of the triplet of real fields which is restricted to
the surface of the unit sphere [10,28,29], and the twisted
rings correspond to the fundamental knots (the so-called
unknots) [37]. The present model also bears certain
similarity to the twisted Q-balls, i.e., stationary rotating
nontopological solitons in field models with polynomial
nonlinearity [10,29].

Numerical solutions of Eq. (2) were obtained by the
relaxation method. Examples of stationary twisted toroidal

FIG. 1 (color online). Left, central, and right columns:
Hopfions with chemical potential y = 15, intrinsic winding
number s = 1, and vorticity m =0, 1, 2, in the model with
the steep modulation format. The first row shows the density
surface at |¢(x,y, z)|> = 1, the second and third rows display the
absolute value and phase of the wave function in cross section
y = 0, and the fourth row shows the distribution of |g(x, y, z)| at
z = 0. Here and in other figures, blue and red regions in density
plots correspond to lower and higher values, respectively.
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FIG. 2 (color online). The same as in the three top rows in Fig. 1
for a stable Hopfion with s = 1, m = 0, and ¢ = 10, supported
by the smooth modulation format. The density surface corre-
sponds to |g(x,y.z)]* = 0.4.

states with winding number s =1, m =0, 1, 2 are
displayed in Fig. 1 for the model with the steep nonlinearity
modulation, while solitons with s = 1, m = 0 in the model
with the smooth modulation are shown in Fig. 2. To the
best of our knowledge, Hopfions shown in Figs. 1 and 2
represent the first examples of the toroidal twisted vortex
tube, nested in localized modes, which self-trap in a scalar
model. The coiled vortex thread and the usual straight vortex
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FIG. 3 (color online). Families of twisted toroidal states with
intrinsic winding number s = 1 and different values of vorticity
m: (a) the norm versus the chemical potential; (b) the width
versus the norm; (c) the radius of the coiled vortex line R versus
the norm [the blue curve in (c) shows 3N]. Stable and unstable
branches are depicted by black and red segments, respectively.
Circles in (a) correspond to the modes displayed in Fig. 1.
The chain of green dots in (c) depicts the VA prediction for R.
Lower blue curves in (b),(c) correspond to the states with s = 1,
m = 0 in the model with the smooth modulation format, which
are completely stable, while all other results pertain to the steep
format. (d) The real part of the instability growth rate, for
different values of azimuthal perturbation index k, versus the
chemical potential, for m = 1.

axis (for m = 1, 2) are clearly visible in Figs. 1 and 2.
No solutions have been found for s > 1, suggesting that
the single nonzero value of the intrinsic winding number
may be s = 1.

The main properties of the toroidal vortex-soliton
families are summarized in Fig. 3. They satisfy the
anti-Vakhitov-Kolokolov criterion, dN/du > 0, which is
a necessary stability condition for localized modes sup-
ported by repulsive nonlinearities [38]. The state with
smaller m always possesses a larger norm. Figure 3(c)
shows that the radius of the coiled vortex thread decreases
with the increase of norm N, remaining finite (not col-
lapsing to zero) at N — oo.

Physical parameters of these modes can be estimated
using the above-mentioned data for "Li [21]. The result is
that the twisted rings of radius ~10 pym, with the density
peaked in the region with the local value of the scattering
length ~ 5 nm, can be built of ~103 atoms, the respective
time scale being ~ 10 ms.

Analytical results can be obtained by means of the varia-
tional approximation (VA), based on the Lagrangian of
Eq. 2), L=x [ rdr [T2dz{2[(m/r)* — p]|w|* + |[Vw|*+
o|w|?}. In the model with the steep modulation, we use
a natural ansatz, w(r,z)=A[(r—R)+iz]*r"e~ ")/ for
the wave function with two winding numbers, where A
and R are the soliton’s amplitude and radius of the coiled
vortex axis. Results are presented here for the basic twisted
toroidal state with m = 0.

The norm of the ansatz is N = (27)%2dA?, with
d=R?>—(27)'"?2R +3. Substitution of the ansatz
into the Lagrangian yields L.;=—uN+(N/8d)[3R*—
(87)'2R+11]+[N?/2d*(27)3/?|[R* — (87)"/>R3 + 14R>—
8(27)'/2R +15]. The variational equation following from
here, OL./OR =0, yields the radius of the coiled
vortical axis as a function of the norm. In the Thomas-
Fermi (TF) limit N — oo, this equation takes the form of
2(4—m)R3,—3(27)'?R2, +4(27—3)R,, =3(21)'/?, yield-
ing a finite radius R, ~ 1.07. In fact, R, is an asymptoti-
cally exact value of the radius in the limit of N — oo.
The modal width, defined by W? = 4N~ [[[(x* + y* + 2%)

lg(x,y,2)|*dxdydz, also attains an asymptotically constant
value at N — oo, which is predicted by the TF app-
roximation (cf. Ref. [18]), Wi, = 4[[ p?dp/a(p)]~'x
fg’" p*dp/o(p). As seen in Fig. 3(b), these values for the
steep and smooth modulations, W%F =12 and 8, respec-
tively, are close to their numerical counterparts. On the
other hand, at N — 0O the toroidal modes expand indefi-
nitely, corroborating the conclusion that they do not
bifurcate from linear eigenmodes.

In Fig. 3(c), the VA shows close agreement with numeri-
cal findings, starting from moderate norms N ~ 100 and
confirm that the above value R, is asymptotically exact for
N — o0 and m = 0. The TF approximation can be used to
estimate the radius of the vortex core surrounding the coiled
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FIG. 4 (color online). Isosurface plots showing the perturbed
evolution of the states with y = 15, s = 1, m = 0 (the first row);
u=95 s=m=1 (the second row); u=16, s=m=1
(the third row); and y =22, s = 1, m = 2 (the fourth row) in
the model with the steep modulation. Surfaces are drawn at
|g(x,y,z)[> = 0.2 in the second row and at |g(x,y,z)]> =1 in

all others.

vortical axis in the (r,z) plane, p,~ (27°)/*N=1/2. 1t
shrinks at N — oo under the action of the nonlinear
pressure.

The stability of the twisted toroidal modes was tested by
direct simulations, and also by means of the linear-stability
analysis. For the latter purpose, a perturbed solution is
substituted into Eq. (1) as g = (w+ue™*#+%" 4 p* g=ikd+5"1)
em#=int where u,v are small perturbations with integer
azimuthal index k and growth rate 6. The resulting
linearized eigenvalue problem was solved numerically.
We have found that the basic twisted toroidal state, with
s =1, m =0, is completely stable, for the steep and
smooth modulation formats alike. An example of the
corresponding stable evolution in the former case is
displayed in Fig. 4. The vortices with s =1, m =1 are
unstable at y < pi, = 11.2, and stable at y > p,;,. The
most destructive perturbations chiefly correspond to azi-
muthal index k = 1, as shown in Fig. 3(d), while k = 2 is
dominant at 4 — 0. The development of the instability
causes bending of the straight vortex line, which eventually

z

T xTr

FIG. 5 (color online). Isosurface plots illustrating the solid-
ring-like rotation of the twisted toroidal state with s = 1, m = 0,
1 = 10, in the steep-modulation model, around its diameter (the y
axis), initiated by the torque with @ = 5 and x, = 5 (see the text).
Surfaces, corresponding to |g(x,y,z)[*> = 0.2, are drawn at
t =141, 156, and 177, the rotation period being T ~ 48.

touches the circular vortex thread, destroying the entire
structure, as seen in Fig. 4. Higher-order vortices with
s = 1, m > 2 are completely unstable. The instability of the
m = 2 mode splits the straight vortex line into two, which
then collide with the circular vortex thread; see Fig. 4.

The shape of the twisted toroidal state with s =1,
m = 0 suggests a possibility to set it in rotation around
its diameter, like a solid ring, by applying an angular
momentum in the plane of the ring. To this end, the wave
function of the toroidal state was multiplied by
expliaz tanh(x/xg)], with constants a and x,, which
imparts angular momentum directed along y. As shown
in Fig. 5, the ring-shaped state indeed responds by
persistent rotation around the y axis.

In summary, we have shown that 3D physical settings
described by the GPE with the strength of the repulsive
nonlinearity growing fast enough toward the periphery
gives rise to robust states of the Hopfion type, i.e., twisted
toroidal tubes with two independent winding numbers, the
intrinsic one s, and the conventional vorticity m. This is the
first example of a single-component model which produces
such complex states in the absence of trapping potentials.
The modes exist for s = 1, being stable at m < 1. Steep and
smooth nonlinearity-modulation profiles produce similar
results. A challenging question, suggested by the analogy
with the FSM [28], is whether the same model admits
still more complex states, such as linked vortices and
toroidal knots.
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