
Large Suppression of Quantum Fluctuations of Light from a Single Emitter
by an Optical Nanostructure

Diego Martín-Cano,1,3,* Harald R. Haakh,1 Karim Murr,2,3,4,5 and Mario Agio2,3,4
1Max Planck Institute for the Science of Light, 91058 Erlangen, Germany

2National Institute of Optics (CNR-INO), 50125 Florence, Italy
3Center for Quantum Science and Technology in Arcetri (QSTAR), 50125 Florence, Italy
4European Laboratory for Nonlinear Spectroscopy (LENS), 50019 Sesto Fiorentino, Italy

5Dipartimento di Fisica ed Astronomia, Università di Firenze, 50019 Sesto Fiorentino, Italy
(Received 6 May 2014; revised manuscript received 2 August 2014; published 31 December 2014)

We investigate the reduction of the electromagnetic field fluctuations in resonance fluorescence from a
single emitter coupled to an optical nanostructure. We find that such hybrid systems can lead to the creation
of squeezed states of light, with quantum fluctuations significantly below the shot-noise level. Moreover,
the physical conditions for achieving squeezing are strongly relaxed with respect to an emitter in free space.
A high degree of control over squeezed light is feasible both in the far and near fields, opening the pathway
to its manipulation and applications on the nanoscale with state-of-the-art setups.
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Optical nanostructures are known to be efficient archi-
tectures for controlling light-matter interactions [1]. Here,
near-field effects allow us to modify radiation properties of
a broad range of quantum emitters (QEs) covering atoms
[2], color centers [3,4], molecules [5,6], or quantum dots
[7]. A major goal is now to explore their performance in
the quantum regime [8], so far mainly examined in cavity
quantum electrodynamics [9]. Antibunching has been
investigated as a signature of the granularity of quantum
light arising from QEs coupled to nanostructures [3,4,7].
In contrast, electromagnetic field fluctuations below shot
noise [10], which mirror the quantum wave nature of light,
are known to be challenging to measure [11] at the quantum
level and have not been addressed in such hybrid systems.
Reduced quantum fluctuations are the unique character-

istics of squeezed states of light [12], which are relevant for
overcoming classical application limits in, for instance,
precision measurements and spectroscopy. Despite recent
experimental [11,13] and theoretical [14,15] advances on
the microscopic scale, sources of squeezed light usually
rely on the nonlinear response of macroscopic systems,
typically crystals or atomic vapors [16].
In this Letter, we show that optical nanostructures can

significantly increase squeezing in the resonance fluores-
cence from a QE. Moreover, they strongly relax the
conditions for overcoming shot noise in terms of bandwidth
and excitation power. Our results open a pathway towards
the experimental measurement of such squeezed states of
light in state-of-the-art setups and their manipulation on the
nanoscale, with prospects for advancing applications at the
single-photon level.
The quantum fluctuations of the electromagnetic field

can be measured by homodyne techniques [17]. In the
simplest approach, the source field is mixed with a strong

coherent field via a beam splitter and collected by a
photodetector. This gives access to the variance ðΔÊiÞ2 ¼
h∶ðÊi − hÊiiÞ2∶i of the electric field quadrature from the

source, e.g., the vector component Êiðr; tÞ ¼ ÊðþÞ
i ðr; tÞ þ

Êð−Þ
i ðr; tÞ along the i direction. Here, we consider normal

ordering (∶∶) to directly compare the variance to the shot-
noise level, so that negative values of ðΔÊiÞ2 indicate
squeezed light. We evaluate these fluctuations in the
framework of macroscopic quantum electrodynamics in
dispersive and absorptive media [17]. In the case of a
two-level QE and imposing the rotating wave and Markov
approximations, the positive-frequency scattered electric

field operator is ÊðþÞ
i ðr; tÞ ¼ jgiðrÞjeiϕiðrÞσ̂ðtÞ, which

depends on the QE coherence σ̂ ¼ jgihej. Here, jgi and
jei are the QE’s ground and excited states, respectively. The
spatial emission characteristics are encoded in the ampli-
tude jgiðrÞj and phase ϕiðrÞ, which can be expressed in
terms of the classical electromagnetic Green’s tensor [18]
(see Sec. S1 of the Supplemental Material [19]). Evaluating
the fluctuations of Êiðr; tÞ, we find

½ΔÊiðr; tÞ�2 ¼ 2jgiðrÞj2½ðhσ̂†ðtÞσ̂ðtÞi − jhσ̂ðtÞij2Þ
− Reðei2ϕiðrÞhσ̂ðtÞi2Þ�: ð1Þ

The expectation values are evaluated under steady-state
conditions by solving the optical Bloch equations. These
contain the effects of the driving field’s Rabi frequency Ω,
the spontaneous decay rate γ, and the frequency detuning
δL ¼ ωL − ωE between the laser and the QE. We also allow
for additional pure dephasing at a rate γ� [17]. Equation (1)
can then be expressed in a form valid for a QE in any
environment,
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½ΔÊiðr; tÞ�2 ¼
steadystate

jgiðrÞj2
z2

1þ δ2þ z2

×

�
1−

ðδ2þ 1Þð1þ cos½2ϕiþ 2Φ− 2ωLt�Þ
ð1þ xÞð1þ δ2þ z2Þ

�
;

ð2Þ

in terms of the normalized dephasing rate x ¼ 2γ�=γ, the
normalized detuning δ ¼ 2δL=ðγ þ 2γ�Þ, and the normal-
ized Rabi frequency z ¼ ffiffiffi

2
p jΩj= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γðγ þ 2γ�Þp
. In a homo-

dyne detection scheme, the cosine in Eq. (2) can be set to
unity without loss of generality by adjusting the phases ϕi
and Φ [34]. A detailed derivation of Eqs. (1) and (2) is
given in Sec. S2 of the Supplemental Material [19].
From Eq. (1), we see that ðΔÊiÞ2 is governed by the QE’s

optical coherence σ̂ and upper-state population σ̂†σ̂ [10].
The fluctuations hσ̂†ðtÞσ̂ðtÞi − jhσ̂ðtÞij2 are always posi-
tive, and, hence, tend to destroy squeezing, but they
approach zero the weaker the excitation. Since we deal
with one QE, a small detection efficiency (∝ jgiðrÞj2 at the
detection position) results in low photon count rates, which
has prevented the detection of squeezing in free space and
made it challenging even in the presence of a cavity [11].
The last term in Eq. (1) originates from quantum fluctua-
tions in the optical coherence σ̂, which is the only one able
to create squeezing. This is a purely nonclassical effect,
which is phase dependent and cannot be obtained with
coherent light or single photon states [10,12].
If a QE is placed near a nanostructure, the dynamics that

generate squeezing are fundamentally changed. First, both
the amplitude jgiðrÞj2 and the phase ϕiðrÞ are modified
by the nanostructure due to its electromagnetic response.
Hence, although the field intensity scattered by the QE and
consequently the detection efficiency increase [1], its
quantum fluctuations can be comparatively reduced with
respect to shot noise, with a squeezing amplitude jgiðrÞj2.
Second, since σ̂ is affected by the enhancement of the
driving field and the change in γ, both induced by the
nanostructure [1], control of these magnitudes can be used
to reduce the electromagnetic field fluctuations, while
increasing the photon count rate.
For a quantitative analysis, we exemplify the nano-

structure with a gold nanosphere (GNS), coupled to a
QE characterized by its transition frequency ωE ¼ 2πc=λE
and dipole d, as illustrated in Fig. 1(a). In this case, the
Green’s tensor G is known analytically. In the far field
(jr − rEj ≫ λE), gi ¼ jgijeiϕ ≈ ðω2

E=ϵ0c
2ÞGijðr; rE;ωEÞdj

provides an excellent approximation of the amplitude
and phase in Eq. (1), whereas a quantum correction must
be included in the near field [35] (see Sec. S1 of the
Supplemental Material [19]).
Figure 1(b) shows the squeezing amplitude jgθj2 at a

detection point in the far field [D1 in Fig. 1(a)], where the θ
component dominates. jgθj2 features several local maxima,

arising from the excitation of plasmon-polariton resonances
[36], which depend on the GNS radius R and on the QE
emission wavelength λE. The strongest one originates from
the dipole resonance, as indicated by the two-lobe pattern
in the far field in Fig. 1(c). Squeezing is enhanced by up
to a factor of 20 due to the presence of the GNS. In
comparison with a cavity environment, we estimate that the
limited mirror transmission leads in fact to a normalized
squeezing amplitude slightly lower than the GNS value (see
Sec. S3 of the Supplemental Material [19]). The maxima at
larger R are associated with higher-order resonances, which
reshape the far-field pattern more strongly than the dipolar
one [see Fig. 1(c)], yet with a weak dependence on
moderate angular variations. Therefore, nanostructures may
be exploited to control the directionality of squeezed-
state emission in the far field, which can be optimized
by suitably designed architectures [37].
The presence of a nanostructure also strongly modifies

the conditions for the creation of squeezed light from a QE.
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FIG. 1 (color online). (a) A quantum emitter is placed at a
distance s from a gold nanosphere of radius R. D1 and D2 are
detection points in the far and near fields, respectively. D1 is on
the x axis at 105λE from the nanosphere center, while D2 is along
the z axis, 10 nm from the nanosphere surface. The emitter dipole
moment is perpendicular to the nanosphere surface. (b) Normal-
ized squeezing amplitude jgθ=gθ;0j2 at D1 as a function of
wavelength λE and R, for s ¼ 10 nm. The θ component of the
field quadrature corresponds to the dominant polarization in this
configuration. jgθ;0j2 is the squeezing amplitude in the absence of
the nanosphere. (c) Far-field squeezing amplitude jgθj, near the
dipolar (R ¼ 60 nm, solid blue curve) and quadrupolar
(R ¼ 120 nm, dashed red curve) nanosphere resonances at
λE ¼ 550 nm. The dotted black curve corresponds to the free-
space case.
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This is possible because ðΔÊiÞ2 depends on the frequency
detuning δL, the Rabi frequency Ω (i.e., the driving field)
and the QE’s spontaneous decay rate γ, which differ from
their values in free space [1] (δL0, Ω0, and γ0, respectively).
In practice, the boundaries for the generation of squeezing
depend only on the ratios Ω=γ and δL=γ [see Eq. (2)].
For a given configuration, these limits are shown in
Fig. 2(a) as a function of the rescaled detuning and driving
field (δ0 ¼ 2δL0=γ0 and z0¼

ffiffiffi
2

p
Ω0=γ0, respectively).

Importantly, we find that the detuning range with sizable
squeezing has increased by two orders of magnitude with
respect to free space, as displayed in Fig. 2(b). This is
directly related to the fact that γ=γ0 ∼ 60 and also to a shift in
the resonance frequency. Moreover, squeezing occurs over a
much wider range of laser intensities as compared to free
space, cf. Fig. 2(b) at zero detuning. The reason is that the
GNS has a larger impact on γ than on the field enhancement
with respect to free space (Ω=Ω0 ∼ 4.9 for this case), so that
the ratio Ω=γ provides a weaker excitation level at the same
incident power (∝ z0Ω=γ).
Realistic QEs can be strongly affected by dephasing

[38], which can preclude the generation of squeezing in free
space. To gain intuition on how the nanostructure may
overcome this difficulty, we show in Fig. 3 ðΔÊθÞ2 as we
vary the distance s [see Fig. 1(a)] at zero detuning, fixed Ω,
and assuming an additional rate of pure dephasing,

γ� ¼ γ0=2. In free space, ðΔÊθÞ2 exhibits small positive
values; i.e., the field fluctuations lie above shot noise.
In contrast, the presence of the GNS allows for quantum
squeezing over a range of distances that depend on Ω, γ�,
and γ. For example, for Ω ¼ 5γ0, negative values of ðΔÊθÞ2
occur below s ¼ 35 nm and its minimum is reached at
s ¼ 23 nm. This overall behavior is general, as highlighted
by the other curves in Fig. 3 corresponding to a larger Ω.
The minimum of each curve results from a nontrivial
balance between Ω, γ, the ratio 2γ�=γ, and gi. All of these
depend on the QE position (see the inset of Fig. 3) while Ω
is kept constant. Importantly, it is the large increase in γ
with respect to the free-space rates γ� and γ0 that helps to
fulfill the condition set by Eq. (2), cf. [39], but it is in itself
not sufficient to warrant squeezing. Still, the condition is
robust against the positioning of the QE and squeezing
can be achieved over the whole range of distances given
in Fig. 3 by adjusting Ω (not displayed). A significant
enhancement of the squeezing amplitude is available at
distances s of a few tens of nanometers for the considered
case. As the QE moves towards the GNS surface, optimal
squeezing requires increasingly stronger Ω, especially once
s falls below 10 nm, where absorption by real metals
provides a dominating nonradiative decay channel for the
QE [40]. This is reflected in the growing deviation of γ=γ0
from jgθ=gθ;0j2 (see inset in Fig. 3). Nevertheless, this
figure can be modified by optimized nanostructures [40]
and quantum squeezing may, in principle, be enhanced
without considerably raising Ω to compensate for the
nonradiative losses.

FIG. 2 (color online). Electric field fluctuations with (a) and
without gold nanosphere (b). The parameters are s ¼ 10 nm,
R ¼ 60 nm, λE ¼ 550 nm and fields are detected at D1 [see
Fig. 1(a)]. The lower bound of the color scale displays the
different minimum value in each panel. Their ratio emphasizes
the 20-fold enhancement of squeezing due to the nanosphere as
compared to free space.

FIG. 3 (color online). Normalized electric field fluctuations as a
function of the distance s between the quantum emitter and the
nanosphere surface. The quantum emitter is affected additionally
by pure dephasing at a rate γ� ¼ γ0=2. The curves correspond to
different Rabi frequencies Ω. The other parameters are the same
as in Fig. 2(a). The result without nanosphere and Ω ¼ 0.4γ0 is
represented by a black dashed line. The inset shows the
normalized total decay rate γ=γ0 (solid blue curve) and the field
intensity enhancement factor jgθ=gθ;0j2 (dotted black curve) as a
function of s. The ratio 2γ�=γ between the additional pure
dephasing and the one associated with spontaneous decay is
also displayed (dashed red curve, right axis).
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Further enhancement of squeezing can be achieved for
detection in the near field, where evanescent modes become
relevant. Even in free space, the squeezing amplitude close
to a QE is orders of magnitude higher than in the far field,
due to the spatial behavior of its dipolar field. To estimate
the ability of nanostructures to manipulate squeezed light in
the near field, we consider a detection point on the opposite
side of the GNS [D2 in Fig. 1(a)]. Figure 4(a) displays the
normalized squeezing amplitude for the radial field com-
ponent, jgr=gr;0j2, which dominates in the near-field region.
The enhancement leads to values two orders of magnitude
larger than those encountered in the far field in the same
parameter range of λE and R. In contrast with the far field,
the enhancement of squeezing increases with higher-order
plasmon-polariton resonances at larger R. This arises from
the rapid spatial decay of the radial field in free space
combined with the field enhancement near the GNS,
which boosts the ratio jgr=gr;0j2. Intuitively, we expect
this quantity to increase up to very high R until the system
resembles a QE near a flat metal surface, where it becomes
limited by propagation losses over the system size [35].
This fact, together with significant experimental evidence

[41], suggests that squeezed light generated in such a hybrid
system could also be efficiently transferred over a consid-
erable distance by nanoscale waveguides (see Sec. S3 of the
Supplemental Material [19]).
For a better understanding of squeezing in the near

field, we now analyze the spatial dependence of the
electric field fluctuations in proximity of the GNS.
Figure 4(b) gives the near-field squeezing pattern for a
large GNS (R ¼ 200 nm). We observe two lateral lobes,
which stem from the excitation of higher-order plasmon-
polariton resonances. These are superimposed with the
dipolar contribution indicated by the presence of the top
and bottom lobes, more clearly visible in Fig. 4(c) in the
case of a smaller GNS (R ¼ 60 nm). Note that despite the
huge enhancements found for large GNSs, the small one
improves the squeezing amplitude, e.g., by a factor 30.
This is the result of detection closer to the QE combined
with a higher near-field enhancement.
Our study indicates a wide range of possibilities for

controlling the quantum fluctuations of light at the nano-
scale using a laser-driven QE coupled to a nanoarchitecture.
We found that the modified dynamics of a QE improve the
generation of squeezed light in resonance fluorescence,
overcoming the limitations of weak driving. Furthermore,
the huge enhancement of spontaneous decay made possible
by optical nanostructures [40] may also allow for the
generation of squeezed states of light under conditions
where the system undergoes fast dephasing. An antenna
effect [6] then boosts transfer of squeezing to the far field,
resulting in a large suppression of quantum fluctuations.
Our results show that the detectable squeezing signal in the
electric field quadrature induced by a nanostructure can
exceed those achievable in conventional resonators, despite
the possibility of a higher inherent QE coherence squeezing
of the latter [14,15]. Altogether, these findings facilitate the
detection of quantum squeezing in resonance fluorescence
from a single emitter within the possibilities of current
experiments and provide perspectives for its practical
application. Moreover, the large near fields can generate
quantum fields on the nanoscale with squeezing levels that
are orders of magnitude higher than in the far field. In this
regard, future research where QEs and nanostructures are in
the strong coupling regime [42] may further advance our
understanding on the limits of squeezing at the nanoscale.
Our approach may help to develop novel solid-state sources
of squeezed light for integrated nanophotonic systems
[3,4,7] and quantum-limited sensitivity [16,43], and provide
new insights into the production of multipartite entangled
states [44,45].

Financial support from the Max Planck Society, the
EC Seventh Framework Programme (284584) and the
Ministero dell'Istruzione, dell'Università e della Ricerca
(2010LLKJBX) are gratefully acknowledged. M. A. wishes
to thank Vahid Sandoghdar.

Wavelength

(a)

R
ad

iu
s,

R
nm

, λE (nm)
450 500 550 600 650 700

50

100

150

200

250

500

1000

1500

2000

2500
ed

uti
lp

ma
 g

ni
ze

eu
qs

 d
ez

il
a

mr
o

N

300 200 100 0 100 200 300
300

200

100

0

100

200

300(b)

z 
(n

m
)

x (nm)

z 
(n

m
)

x (nm)

  , g   g
     2

r
,r 0

200 100 0 100 200
200

100

0

100

200(c)

/

0.1

0.10.5

0.5

1

1.5

1.5

1 1.5 1
0.5

0.1

1

1

5

5

10

10

50

50

5 1

10
2

1

x 10    
26

10
1

10
1

1 10 100

x 10    
26

-(      Er
2

/
2

d  V /C nm
2 2 4( )( -(      Er

2

/
2

d  V /C nm
2( )(

FIG. 4 (color online). (a) Normalized squeezing amplitude for
the radial near-field component jgr=gr;0j2 as a function of λE and
R, for an emitter-surface distance s ¼ 10 nm and detection at D2

[see Fig. 1(a)]. (b),(c) Contour maps of the negative field
fluctuations for the radial component for R ¼ 200 nm (b) and
R ¼ 60 nm (c), with s ¼ 10 nm and λE ¼ 550 nm. The values
are normalized to the square modulus of the dipole moment jdj2
to be independent of a specific quantum emitter. The emitter and
the nanosphere are represented by a black arrow and a disk in the
xz plane, respectively.
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