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The fine structure and ionization energy of the 1s2s2p 4P state of the helium negative ion He−
are calculated in Hylleraas coordinates, including relativistic and QED corrections up to Oðα4mc2Þ,
O(ðμ=MÞα4mc2), Oðα5mc2Þ, and O(ðμ=MÞα5mc2). Higher order corrections are estimated for the
ionization energy. A comparison is made with other calculations and experiments. We find that the present
results for the fine structure splittings agree with experiment very well. However, the calculated ionization
energy deviates from the experimental result by about 1 standard deviation. The estimated theoretical
uncertainty in the ionization energy is much less than the experimental accuracy.
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Because of its long lifetime and ease of production, the
metastable 1s2s2p 4P state of the helium negative ion He−
has long been of interest to both experimentalists and
theorists [1–4]. It provides an ideal testing ground to study
strong electron-electron correlation effects in this fundamen-
tal atomic system, where high precision measurements are
feasible. For example, White and Stillinger [5] have sug-
gested that the exact wave function for the quartet states may
contain higher-order logarithmic terms near the triple coa-
lescence point. These strong electron-correlation effects have
limited the accuracy of previous calculations of properties
such as the energy level structure and lifetime. The non-
relativistic energy of this state was calculated to a relative
accuracy of 1 part in 107 nearly two decades ago by Chung
and co-workers by using the configuration interaction
method [3], but subsequent work has not yielded significant
improvements. The fine structure of this state was measured
byMader andNovick as early as 1972 [1] and the results were
825.23(83) MHz for J ¼ 3=2 to 5=2 and 8663(56) MHz
for J ¼ 1=2 to 5=2, respectively. The corresponding
theoretical fine structure was calculated by Chung and co-
workers [3,6], but the accuracy was lower than that of
the experiment. The ionization energy of the state was also
measured and calculated in Ref. [3]. The experimental result
77.516(6) meVagrees with the less accurate theoretical result
77.518(11) meV and agrees with Bunge and Bunge’s even
less accurate theoretical result 77.51(4) meV [2], but differs
slightly from the experimental result 77.67(12) meV of
Walter et al. [7]. These accuracies fall far short of modern
spectroscopic standards for fundamental atomic systems.
During the past two decades, high precision methods to

calculate the properties of few-electron atoms in Hylleraas

coordinates have been developed by Drake and Yan [8,9]
and by Pachucki and Puchalski [10–12]. As a result, the
nonrelativistic energy of the ground state of lithium has
been calculated to a relative accuracy of 10−15 [11,13] and
its ionization energy to an accuracy of 0.001 cm−1 or better
[11,14]. The agreement of theory with experiment dem-
onstrates the power and utility of the methods developed
by these authors.
The purpose of this Letter is to report a dramatic advance

in the accuracy that can be achieved for the nonrelativistic
energy, fine structure splittings, and ionization energy of
the 1s2s2p 4P state of He−. The calculations are performed
in Hylleraas coordinates by the method developed by Drake
and Yan [8,9].
The nonrelativistic energy and wave function of the

state are calculated by using the Rayleigh-Ritz variational
method. The Hamiltonian of the system is
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in units of 2RM, where the Rydberg constant for finite
nuclear mass is defined by RM ¼ ð1 − ðμ=MÞÞR∞, and μ is
the reduced electron mass. The variational wave function is
constructed from the basic correlated function
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ðl1l2Þl12;l3 is a vector-coupled product of spherical

harmonics for the three electrons to form a state of total
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angular momentum L, and χ is the spin function which
can be chosen to be αð1Þαð2Þαð3Þ for spin quartet states.
See Ref. [13] for more detailed information about the
construction of the variational wave function. We pro-
gressively enlarged the number of basis functions used in
the variational procedure from 70 to 28 008. As shown in
Table I, the extrapolated nonrelativistic energy has con-
verged to approximately 13 significant figures with the
result ENR ¼ −2.178 078 044 567 6ð3Þ a:u: for the 1s2s2p
4P state of He−. This result is more accurate than the
previous best values [3,15] by about 6 orders of magnitude.
The high precision nonrelativistic energy and wave func-
tion provide the foundation for the calculation of relativistic
and QED corrections to the energy. Considering that the
1s2s2p 4P state is a doubly excited state, our calculation
demonstrates the power of Hylleraas-type variational bases
in dealing with doubly excited states of simple atomic
systems.
The leading relativistic corrections of order α2 Ry and

the relativistic recoil corrections of order ðμ=MÞα2 Ry are
calculated by first-order perturbation theory [for conven-
ience the anomalous magnetic moment terms of order α3

Ry and ðμ=MÞα3 Ry are included]

ΔErel ¼ hΨJjHreljΨJi; ð3Þ

where ΨJ is the nonrelativistic wave function and Hrel is
defined by (in atomic units)
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with γ ¼ α=ð2πÞ. The factors of ðμ=meÞ4 and ðμ=meÞ3 arise
from the mass scaling of each term in the Breit interaction.
In the above equation,
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with p ¼ p1 þ p2 þ p3. In Eq. (4), only the terms which
contain spin-dependent operators, i.e., Bso, Bsoo, Bss, and
~Δ3z, contribute to the fine structure splittings (the expect-
ation value of Bð1Þ

3e is zero for spin quartet states). The
reduced matrix elements for these operators were calculated
with the high precision nonrelativistic wave functions and
the results are listed in Table II. Also listed in Table II
are the matrix elements of the spin-independent Breit
operators, which will be used in the determination of the
ionization energy. All the matrix elements for these

TABLE I. Convergence of the nonrelativistic energy for the
1s2s2p 4P state of He− with infinite nuclear mass. The ratio of
differences RðΩÞ ¼ ½EðΩ − 1Þ − EðΩ − 2Þ�=½EðΩÞ − EðΩ − 1Þ�
provides a measure of the rate of convergence to the extrapolated
energy. Units are a.u.

Ω
No. of
terms EðΩÞ RðΩÞ

4 70 −2.177 521 110 364 780
5 182 −2.178 059 296 923 302
6 420 −2.178 076 202 581 397 31.8
7 880 −2.178 077 808 759 359 10.5
8 1710 −2.178 078 014 352 644 7.81
9 3130 −2.178 078 040 867 143 7.75
10 5430 −2.178 078 044 036 570 8.36
11 9000 −2.178 078 044 498 709 6.85
12 14 370 −2.178 078 044 556 858 7.94
13 22 202 −2.178 078 044 565 846 6.46
14 28 008 −2.178 078 044 567 332 6.05
Extrapolated −2.178 078 044 567 6ð3Þ
Bunge and
Bunge [2]

−2.178 077 6ð12Þ
Bylicki and
Pestka [15]

−2.178 077 67ð5Þ
Kristensen et al. [3] −2.178 077 85ð32Þ
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operators were calculated with wave functions containing
up to 22 202 basis functions. The resulting fine structure
splittings for the 1s2s2p 4P state of He− (for isotopes 3He
and 4He, respectively) are listed in Table III, which are
accurate to α3 Ry. A comparison of the theoretical results
with the experimental ones shows that the two are in good
agreement.
Following the formulation of Drake and Yan [18], the

QED corrections to the energy levels of light atomic
systems can be written in the form

ΔEQED ¼ ΔEL;1 þ ΔEL;2 þ ΔEM þ ΔEDK; ð14Þ

where ΔEL;1 denotes the QED correction to the electron-
nucleus interaction, ΔEL;2 the correction to the electron-
electron interaction, ΔEM the finite nuclear mass
correction, and ΔEDK the Douglas and Kroll terms (includ-
ing second-order Breit corrections). These terms have the
following forms:

ΔEL;1 ¼ Zα5μc2flnðZαÞ−2A5;1 þA5;0 þ ZαA6;0

þ ðZαÞ2½ln2ðZαÞ−2A7;2 þ lnðZαÞ−2A7;1 þA7;0�
þ ðα=πÞ½B6;0 þ ZαB7;0� þOðZαÞ3 þOðα=πÞ2g;

ð15Þ
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The expression for ΔEDK is not written here explicitly,
because we do not calculate it in this work. These terms

TABLE II. Reduced matrix elements for the spin-dependent
Breit operators and matrix elements for the spin-independent
ones for the 1s2s2p 4P state of He− with infinite nuclear mass.
Units are a.u.

Operator Value

Bso × 106 3.237 230 27(2)
Bsoo × 106 −5.472 924 9ð1Þ
Bss × 106 −2.267 852 0ð1Þ
~Δ3z × 106 −2.578 463ð1Þ
B1 × 104 −5.483 406 606ð4Þ
B2 × 107 5.148 246 185(14)P

3
i¼1 δðriÞ 2.605 303 906(2)

~Δ2 × 104 −8.823 466 952ð8Þ
Q 0.003 664 529 86(3)
Q, Heð1s2s 3SÞ 0.003 092 498 767 110(6) a

Q1 −3.611 846 59ð6Þ
Q1, Heð1s2s 3SÞ −3.664 150 2ð2Þ b

aDrake and Yan [16].
bPachucki and Sapirstein [17].

TABLE III. Contributions to the theoretical fine structure
splittings for the 1s2s2p 4PJ states of 3;4He− and comparison
with other calculations and experiments. SIS denotes the splitting
isotope shift. Units are MHz.

Term E3=2 − E5=2 E1=2 − E5=2

α2 830.580(1) 8 639.061 4(5)
α3 −5.418 176ð2Þ 8.311 037(1)
α2μ=M; 3He 0.662 1(1) 1.027 8(1)
α2μ=M; 4He 0.498 8(1) 0.774 3(2)
α3μ=M; 3He −1.534 1ð1Þ × 10−4 −3.187 1ð1Þ × 10−4

α3μ=M; 4He −1.156 7ð1Þ × 10−4 −2.402 7ð1Þ × 10−4

Total, 3He 825.824(1) 8 648.399 9(5)
Total, 4He 825.661(1) 8 648.146 5(5)
SIS (3He − 4He) 0.163 2(3) 0.253 4(3)
Theorya 836.4 7 857.5
Experimentb 825.23(83) 8 663(56)
aKristensen et al. [3].
bMader and Novick [1].

TABLE IV. Convergence study of the Bethe logarithm for the 1s2s2p 4P state of He−. N is the total number of
terms in the basis set and lnðk0Þ ¼ βð0Þ þ ðμ=MÞβð1Þ.

Ω N βð0Þ Ratio βð1Þ

1 211þ 255þ 353 2.513 004 0.522 57
2 331þ 374þ 472 2.860 535 0.438 69
3 587þ 629þ 727 2.944 134 4.15 0.250 55
4 1089þ 1130þ 1228 2.966 138 3.80 0.146 32
5 2007þ 2047þ 2145 2.974 631 2.59 0.078 99
6 3596þ 3635þ 3733 2.977 419 3.04 0.046 66
7 6221þ 6259þ 6357 2.978 692 2.19 0.028 42
Extrap. 2.979 7(11) 0.0048(48)
Heð1s2s 3SÞ 2.977 742a 0.004 78a

Heþð1sÞ 2.984 128 555a

aDrake and Goldman [19].
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were recently evaluated by Puchalski and Pachucki [12]
for the 1s22p 2P state of lithium, and will need to be
included in future work. They can be expected to contribute
at the �1 MHz level of accuracy. The expressions and
meanings of the various coefficients Am;n, Bm;n, and Cm;n
are given in detail in Ref. [18], so we do not repeat the
discussion of them (except for A5;0). The coefficient A5;0
has the form

A5;0 ¼
4

3
½19=30 − lnðk0Þ�

�X
i

δðriÞ
�
; ð18Þ

where lnðk0Þ is the Bethe logarithm of the state of interest
and is defined by (with k0 in units of Z2RM)

lnðk0Þ ¼
P

njh0jpjnij2ðEn − E0Þ ln j2ðEn − E0Þ=Z2jP
njh0jpjnij2ðEn − E0Þ

:

ð19Þ

At present, there are two main methods to calculate
nonrelativistic Bethe logarithms for light atomic systems.
One is the variational pseudostate method of Drake and
Goldman [19] and developed by Yan and Drake [20] for
three-electron atoms. The other is the integral method
developed by Puchalski et al. [21]. Both of these methods
have been used in previous work to calculate Bethe
logarithms for the low-lying states of lithium to about
six or seven significant figures. The variational pseudostate
method is used here to calculate the Bethe logarithm for the
1s2s2p 4P state of He−. The results are listed in Table IV.
Surprisingly, the numerical value converges very slowly
and just three converged figures are obtained. The reason
for the slow convergence is not yet known, but it may be
attributed to the strongly correlated nature of the 1s2s2p 4P

state. This is the first application of variational pseudostate
methods to calculate Bethe logarithms for doubly excited
states. It is clear that further improvements are needed in
the technology for these states. However, it is significant
that, as found previously, the Bethe logarithm comes almost
entirely from virtual excitations of the inner 1s electron,
and the outer electrons are, to a good approximation,
passive spectators. It seems likely that the Bethe logarithm
for any atom up to moderately high Z can be predicted to
about 0.2% accuracy from the hydrogenic value for a 1s
electron.
For low-Z atoms and ions, the finite nuclear size

correction to an energy level can be calculated according to

ΔEnuc ¼
2πZðrc=a0Þ2

3

�X
i

δðriÞ
�
; ð20Þ

where rc is the root-mean-square radius of the nuclear
charge distribution and a0 is the Bohr radius.
The results of various QED corrections to the ionization

energy are listed in Table V. The main uncertainty of the
QED contribution comes from the uncertainty in the value

TABLE V. Detailed breakdown of the QED contributions of
order μc2α5 and higher to the ionization energy of the 1s2s2p 4P
state of 4He−. Units are MHz.

Term Value

μc2α5Z½lnðZαÞ−2A5;1 þA5;0� −1511ð18Þ
μc2α5½lnðαÞC5;1 þ C5;0� −6.830
ΔEM ðfinite nuclear massÞ 0.108(9)
μc2α5 ðtotalÞ −1518ð18Þ
μc2α6Z2A6;0 −25.421
μc2α6ZB6;0=π −0.227
μc2α6 lnðαÞC6;1 0.000
ΔEDK 0.0(2.0)
μc2α6 ðtotalÞ −25.6ð2.0Þ
μc2α7Z3 ln2ðZαÞ−2A7;2 2.757
μc2α7Z3 lnðZαÞ−2A7;1 −1.697
μc2α7Z3A7;0 1.192
μc2α7Z2B7;0=π ðtwo-loop bindingÞ 0.132
μc2α7 ðtotalÞ 2.4(2.4)
Total −1541ð22Þ

TABLE VI. Contributions to the (negative) ionization energies
of the 1s2s2p 4PJ states of 4He− and comparison with other
calculations and experiments. Units are MHz.

Term Value

μc2α2 −18 740 754.820ð2Þ
μc2α2ðμ=MÞmp −23 915.825 6ð1Þ
μc2α2ðμ=MÞ2mp −9.542ð1Þ
μc2α4 28 548.674 5ð7Þ1=2

20 741.261 6ð7Þ3=2
19 910.797 2ð7Þ5=2

μc2α4ðμ=MÞ 9.360 2ð2Þ1=2
8.014 3ð2Þ3=2
7.401 7ð2Þ5=2

μc2α5∶Breit g − 2 8.731 763 4ð1Þ1=2−4.997 330 6ð4Þ3=2
0.420 965 72ð1Þ5=2

Enuc −0.985ð3Þ
EQED −1541ð22Þ
Total (this work, MHz) −18 737 655ð22Þ1=2−18 745 478ð22Þ3=2−18 746 303ð22Þ5=2
Total (this work, meV) −77.492 71ð9Þ1=2−77.525 07ð9Þ3=2−77.528 48ð9Þ5=2
Total (previous work, J ¼ 5=2, meV)
Theorya −77.51ð4Þ
Theoryb −77.518ð11Þ
Experimentb −77.516ð6Þ
Experimentc −77.67ð12Þ
aBunge and Bunge [2].
bKristensen et al. [3].
cWalter et al. [7].
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of lnðk0Þ, which gives an uncertainty of 18 MHz. Together
with the nonrelativistic, relativistic, anomalous magnetic
moment of the electron, and finite nuclear size corrections,
we obtain the ionization energies (relative to the 1s2s 3S
state of He) of the three fine structure components
(J ¼ 1=2; 3=2, and 5=2) of the 1s2s2p 4PJ states of
He−. These results are listed in Table VI. The ionization
energy of the J ¼ 5=2 component is usually defined in the
literature as the electron affinity of the 1s2s 3S state of He.
So far there are two experimental results for this value:
i.e., the relatively less accurate value 77.67(12) meV
given by Ref. [7] and the relatively more accurate value
77.516(6) meV given by Ref. [3]. These two results do not
agree with each other. On the theoretical side, our present
result is 77.528 48(9) meV, which differs from the more
accurate experimental value 77.516(6) meV by 1 standard
deviation. Reference [2] and Ref. [15] give the same rough
estimate value 77.51(4) meV. The error bar is large enough
that it agrees with both the experimental ones.
The parameters used in the present work are [22] R∞ ¼

3 289 841 960.364ð17Þ MHz, α ¼ 1=137.035 999 074ð44Þ,
me=Mð3HeÞ¼ 1.8195430761ð16Þ×10−4, me=Mð4HeÞ¼
1.37093355578ð55Þ×10−4, andrcð4HeÞ¼1.681ð4Þ fm[23].
In summary, in this work we have obtained highly

accurate nonrelativistic energies and wave functions for
the 1s2s2p 4P state of He− by solving the Schrödinger
equation in Hylleraas coordinates. We have also obtained
the fine structure splitting and ionization energy. The
results for the fine structure agree with experiment very
well. However, the theoretical ionization energy does not
agree with either of the experimental values, and the two
most precise experimental values do not agree with each
other. Clearly, further experimental studies are needed to
clarify the situation.
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