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We investigate photon-momentum sharing between an electron and an ion following different
photoionization regimes. We find very different partitioning of the photon momentum in one-photon
ionization (the photoelectric effect) as compared to multiphoton processes. In the photoelectric effect, the
electron acquires a momentum that is much greater than the single photon momentum ℏω=c [up to (8=5)
ℏω=c] whereas in the strong-field ionization regime, the photoelectron only acquires the momentum
corresponding to the photons absorbed above the field-free ionization threshold plus a momentum
corresponding to a fraction (3=10) of the ionization potential Ip. In both cases, due to the smallness of
the electron-ion mass ratio, the ion takes nearly the entire momentum of all absorbed N photons (via the
electron-ion center of mass). Additionally, the ion takes, as a recoil, the photoelectron momentum resulting
from mutual electron-ion interaction in the electromagnetic field. Consequently, the momentum
partitioning of the photofragments is very different in both regimes. This suggests that there is a rich,
unexplored physics to be studied between these two limits which can be generated with current ultrafast
laser technology.
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In a recent experiment [1] the average photoelectron
momentum component along the laser propagation (which
we call parallel, Oz direction) was measured in the process
involving absorption of many, circularly polarized (30–50)
photons. The experiment showed that this component, pe

z ,
of the electron momentum grows linearly as a function
of the laser intensity. More specifically, it was shown that
pe
z is nearly equal to the average photoelectron energy

divided by the speed of light. Assuming that the number of
photons absorbed is the number needed to overcome the
ionization potential Ip plus the number required to supply
to the above threshold ionization, ATI, the above finding
means that the momentum associated with Ip is absent from
the electron momentum; it therefore must be given to the
ion. The experimental results can be interpreted as the
breakdown of the dipole approximation at surprisingly
low light intensities (I ¼ 1014 W=cm2) where the electron
energies are far from the relativistic regime and the laser
wavelength λ is much longer than the characteristic atomic
size 2a0 ¼ 0.106 nm. The dipole approximation is com-
monly used up to much higher intensities, much greater
than I ¼ 1014 W=cm2 [2,3]. Within this approximation the
electron does not gain any net momentum along the laser
propagation direction (Oz); i.e., the dipole approximation
predicts that the distribution fðpe

zÞ of the electron momen-
tum along the propagation direction is symmetric with
respect to pe

z ¼ 0 and consequently the average momentum
hpe

zi ¼ 0. So far, to our knowledge, in nearly all current
theoretical, beyond-dipole-approximation approaches [4–7],

the issue of sharing of the momentum between an electron
and an ion was not addressed in detail since in most previous
theoretical work the center of mass motion was not consid-
ered at all and the theory was formulated in terms of only the
relative electron-ion coordinate and relative electron-ion
momentum. Thus, the total transfer of the photon’s momen-
tum to the atom has not been taken into account. The only
exception is a [8] Monte Carlo classical model for the
electron. However, such a model relies on the unknown
distribution of initial conditions for the classical trajectories
launched after tunneling of the electron from an initial
quantum bound state.
We demonstrate how the photon momentum is shared

between the electron and the ion in the case of single
photon absorption, the perturbation regime, and in the case
of the multiphoton absorption, the nonperturbative regime.
For the former case we use perturbation theory whereas for
the latter we extend the strong field approximation (SFA)
[2,3] method and use a time dependent Gaussian pulse
envelope. In both cases, we include the electron and ion
degrees of freedom. These calculations suggest the follow-
ing physical insights:
(i) For the one-photon absorption case:

hpe
zi ¼ ð8=5ÞEel=c; hpi

zi ¼ −
3

5

Eel

c
þ Ip

c
; ð1Þ

where Eel ¼ ℏω − Ip is the kinetic energy of the photo-
electron. The presence of the (8=5) factor is surprising: it
leads to the conclusion [4] that when ℏω > ð8=3ÞIp we
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have hpe
zi > ℏω=c which means that the photoelectron

takes more momentum than the photon possesses.
Equation (1) is one important result of our calculation.
(ii) For multiphoton, strong-field, ionization with low

photon frequencies, ℏω ≪ Ip, we find

hpe
zi ¼ hEeli=cþ 0.3Ip=c; hpi

zi ¼ 0.7Ip=c; ð2Þ
where hEeli is the photoelectron energy averaged over
the whole ATI spectrum. In both Eqs. (1) and (2) the
electron momentum results from the dynamics occurring in
the relative coordinates and relative momenta. Therefore,
the same momentum is taken by an ion in the opposite
direction via recoil. The ion also acquires, via c.m. motion,
nearly the entire momentum of n-absorbed photons which
results in the net ion momentum 0.7Ip=c. This ion
momentum is very different from the net ion momentum,
Eq. (1), in the case of the photoelectric effect which for
large photon energies becomes −ð3=5Þℏω=c.
(iii) We note that in the multiphoton regime a surprising

0.3Ip=c shift in the electron parallel momentum appears.
While this term did not appear in Ref. [1], the relation
hpe

zi ¼ hEeli=cþ 0.3Ip=c is not inconsistent with the
experimental results [1] because of the experimental errors
which are close to 0.3Ip=c. A similar shift appears in a
relativistic tunneling model presented in Ref. [7] but is
absent in other approaches [5,6].
(iv) With the net momenta of the electron and of the ion,

very different in these two extremes, one is forced to
conclude that there must be a rich and complex physics that
links the two. This physics has never been explored.
The two body electron-nucleus quantum Hamiltonian

in the Coulomb gauge (∇ · ~A ¼ 0 where ~A is the vector
potential of a classical electromagnetic, EM, field) is
written as

Ĥð ~̂pe; ~̂pi; ~re; ~ri; tÞ ¼ Ĥ0 þ V̂e
intðt; ~reÞ þ V̂i

intðt; ~riÞ ð3Þ

with the free atom Hamiltonian Ĥ0:

Ĥ0 ¼
1

2me
~̂p2
e þ

1

2mi
~̂p2
i −

e2Z
j~re − ~rij

; ð4Þ

and the time dependent field interactions with an electron
and a nucleus having charges −e (e > 0 is the elementary
charge) and Ze, respectively,

V̂e
intðt; ~reÞ ¼

e
mec

~Að~re; tÞ · ~̂pe þ
e2

2mec2
~A2ð~re; tÞ: ð5Þ

~̂pe and ~̂pi are momentum operators of the electron and the
ion, respectively. We neglect the interaction V̂i

int of the EM
field with the ion. We have checked that this term does not
modify the momenta distribution fðpzÞ and averages hpe

zi
plotted in all figures because of the smallness of the

electron-ion mass ratio, me=mi. We separate the center
of mass motion in Ĥ0 via a standard transformation

~Rc:m: ¼ ½me~reþmi~ri�=Mt; ~r¼ ~re−~ri; Mt¼meþmi;

ð6Þ
~̂Pc:m: ¼ ~̂pe þ ~̂pi; ~̂p ¼ ½mi ~̂pe −me ~̂pi�=Mt: ð7Þ

Thus Ĥ0 describes the c.m. motion as a free particle and
the motion (in the relative coordinate) of a “particle” having
electron-nucleus reduced mass m0

e ¼ memi=Mt. By con-
trast, such a separation is impossible when the interaction

V̂e
intðt; ~reÞ term is added since the term ~Aðt − ze=cÞ · ~pe

couples (via relation ze ≃ zþ Zc:m:.) the c.m. motion with
the relative motion.
We calculate the photoelectron momentum fðpzÞ dis-

tributions in the case of the simple photoelectric effect for
UV (or XUV) frequencies (i.e., when ℏω > Ip and the laser
intensity is weak). We use the standard time dependent-
perturbation theory which gives the following first order
transition amplitude for a transition from an initial state ψ in
to the final state ψf [9]:

Afi≃−i
ℏ

Z
∞

−∞
dthψfjeiĤ0t=ℏV̂e

intðt− ze=cÞe−iĤ0t=ℏjψ ini: ð8Þ

First, we use linear polarization along the x axis and a
Gaussian form of the laser pulse envelope in ~Aðt0Þ:

~Aðt0Þ ¼ −~ex
c
ω
E0 exp

�
−

t02

2τ2G

�
sinðωt0Þ; ð9Þ

where t0 ¼ t − ze=c is the retardation time. E0, ~ex, ω,
and τG are the UV pulse amplitude of the electric field,
polarization vector, its central frequency, and duration. Our
initial state is

ψ in ¼ ð2πℏÞ−3=2ψBð~rÞ
Z

d3PΦc:m:ð~PÞ exp
�
i
ℏ
~Rc:m: · ~P

�
;

ð10Þ

where Φc:m:ð~PÞ describes the momentum spread of the
initial center-of-mass (c.m.) wave packet. It is assumed that
the average of the initial c.m. momentum h~Pc:m:i ¼ 0 and
that the norm of Φc:m:ð~Pc:m:Þ is equal to 1. The final state is

ψf ¼ ð2πℏÞ−3=2 exp
�
i
ℏ
~Pf
c:m: · ~Rc:m:

�
ψc

~pð~rÞ; ð11Þ

where ψc
~pð~rÞ is the Coulomb wave. We next replace

the exact Coulomb wave ψc
~pð~rÞ by a plane wave

ð2πℏÞ−3=2 exp ði~p · ~r=ℏÞ which allows us to obtain simple
analytic formulas. We show in Ref. [10] that the distribu-
tion of momenta fðpzÞ and the average momentum hpzi are
not affected by the Coulomb corrections in the case of the
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initial 1s bound state and we also provide there more
details for the derivation of the momenta distribution fðpe

zÞ.
Since the interaction Ve

int depends on the retardation
t0 ¼ t − ze=c, we change in Eq. (8) the integration variable
t into t0 ¼ t − ze=c and we use the relation ze ¼ Zc:m: þ α0z
where α0 ¼ mi=mt. We thus get

Afi¼
2eE0pxgðxÞffiffiffi

π
p

meℏω
~ψBð~p−α0K~ezÞΦc:m:ð~Pf

c:m:−K~ezÞ; ð12Þ

where ~ψBð~pÞ ¼ ð8=πÞ1=2p5=2
a ½p2

a þ ~p2�−2 is the Fourier
transform of the initial bound, 1s, state which in the case
of a H-like ion, pa ¼ Zℏ=a0, a0 is the Bohr radius and
gðxÞ ¼ ffiffiffiffiffiffi

2π
p

τG exp½−τ2Gx2=2ℏ2� is the Fourier transform of
the Gaussian laser pulse envelope and x ¼ Ef þ Ip − ℏω.
gðxÞ for long pulses becomes 2πℏδðEf þ Ip − ℏωÞ. For
long monochromatic pulses K ¼ ðEf þ IpÞ=c becomes
equal to the photon momentum ℏω=c. Note that the initial

c.m. momentum distribution Φc:m:ð~Pc:m:Þ is shifted by the
photon momentum K which means that the c.m. acquires
exactly the photon momentum ℏω=c. Additionally, the
initial (relative) bound state momentum distribution in
~ψBð~pÞ is also shifted by the momentum of nearly the
same momentum ¼ α0K~ez. Next we calculate the average
relative momenta along the z axis, see details in Ref. [10].
After inverting Eq. (7) we obtain

hpe
zi ¼ hpzi þ

me

Mt
hPc:m:

z i≃ 8

5

Eel

c
; ð13Þ

hpi
zi ¼ −hpzi þ

mi

Mt
hPc:m:

z i≃ −
3

5

Eel

c
þ Ip

c
: ð14Þ

In Fig. 1 we show the momenta hpe
zi and hpi

zi, as a function
of the electron energy, calculated using more exact expres-
sions derived in Ref. [10] in which the continuum Coulomb

wave function is included and the integrals over momenta
are performed numerically. The most important conclusions
are as follows: When the photoelectron energy approaches
zero, i.e., when Eel ≪ Ip the ion takes the momentum equal
to ðmi=MtÞIp=cwhereas the electron takes themuch smaller
part equal to ðme=MtÞIp=c. By contrast, for large photon
frequencies, ℏω > ð8=3ÞIp, the electron acquires more
momentum than the photon possesses [4]. We note that
the photonmomentumK ¼ ℏω=c is shared unequally for all
photoionization processes; i.e., nearly the entire photon
momentum K is directly transferred (via c.m. momentum)
to the nucleus, see Eq. (14). However, both the electron and
ion acquire momentum hpzi and −hpzi, respectively. These
additional opposing momenta do not originate directly from
the photon momentum but arise from the (beyond-dipole
approximation) internal dynamics electron-ion dynamics
via Coulomb attraction induced by the magnetic force from
the laser magnetic field. Thus any (average) electron-
momentum increase in Oz direction is compensated by
the (average) nucleus recoil in the opposite direction. It is
easy to show that the same momenta distributions fðpzÞ are
valid for the circular polarization as well: it suffices to
replace px by px � ipy and redo the integration over the
momenta px and py in Eq. (12).
The relation, Eq. (13), containing the surprising factor

(8=5) leading to the largephotonmomentum transferwas first
found by Michaud and next by Seaton [4]. They obtained it
using Eq. (72.10) given in Ref. [16].We show in Ref. [10] (at
the end of Appendix 1) that our amplitude, Eq. (12), leads to
the same angular distributions. Michaud and Seaton further
emphasize the unusual discovery that (for large photon
energies) the electrons go away with more momentum than
the photons brought in. To our knowledge, all earlier and
later work related to the retardation in the photoelectric effect
missed this effect since it focused on the shift of a maximum
of the electron angular distributions instead of on the direct
average photon momentum transfer hpe

zi.
We now include the center of mass motion and photon

momentum into the standard SFA approach as reviewed in
Ref. [3] in which the transition amplitude (within the dipole
approximation) is expressed via a Volkov wave function ψV
which replaces the simple plane waves in the transition
amplitude, Eq. (8). ψV , as usually used in SFA [3], is the
exact wave function for an electron interacting with an
electromagnetic wave only in the case when one neglects

the electron coordinate inside the vector potential ~A, i.e.,
within the dipole approximation. In our approach, using
the (relativistic) Klein-Gordon Volkov wave function [17]
we obtain the following (beyond-dipole approximation,
nonrelativistic) Volkov wave function [10]:

ψbd
V ð~re; tÞ ¼

1

ð2πℏÞ3=2 exp
�
i
ℏ
½~pe · ~re − Eelt − Sbdð~pe; t0Þ�

�
;

ð15Þ

FIG. 1 (color online). Electron and ion average momenta along
the propagation direction (Oz) as a function of the electron energy
Eel ¼ ℏω − Ip for a H atom in the UV-laser weak field (photo-
electric effect).
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Sbdð~pe; t0Þ ¼ Gðpe
zÞ
Z

t0

−∞
dτ0Ve

intðτ0Þ;

Gðpe
zÞ ¼ 1þ pe

z=ðmecÞ; ð16Þ

where t0 ¼ t − ze=c. The factor Gðpe
zÞ originates from the

relativistic scalar product k · pe present in the relativistic
Volkov wave function [18,19], see details in Ref. [10]. The
nondipole SFA transition amplitude becomes

Afi ¼
−i
ℏ

Z
∞

−∞
dthψfjV intðt − ze=cÞeiIpt=ℏjψ ini; ð17Þ

ψf ¼ ð2πℏÞ−3 exp
�
i
ℏ
ð~p · ~rþ ~Pc:m: · ~Rc:m: − Eft − SbdÞ

�
;

ð18Þ

where Ef ¼ p2=2m0
e þ ðPf

c:m:Þ2=2Mt is the final energy of
an electron and an ion. We insert Eq. (18) into the
amplitude given in Eq. (17) and change the integration t
variable into t0 ¼ t − ze=c (as we did for the one-photon
processes) which leads to the appearance of the electron
spatial variable ze ¼ Zc:m: þ α0z within the matrix element.
Thus we obtain a new beyond-dipole approximation SFA
amplitude:

Afi ¼
−i
ℏ

~ψBð~p − K~ezÞΦc:m:ð~Pc:m: − K~ezÞ ~að~p; KÞ; ð19Þ

~að~p;KÞ ¼
Z

∞

−∞
dt0V intðt0Þ exp

�
i
ℏ
½ðEf þ IpÞt0 þ Sbd�

�
:

ð20Þ

In standard SFA approaches, applied for monochromatic
pulses, the integral present in Eq. (20) is performed
analytically using the Fourier-Bessel expansion of the
exp½ix sinωt� term [3]. However, since we expect from
classical calculations [1] the importance of using pulses
with time-dependent envelopes, we perform numerically
the time integral present in Eq. (20) using a Gaussian pulse
envelope (with a pulse duration of 15 fs duration). Next we
calculate the average electron and ion momenta along the
Oz axis using Eqs. (1), (7)–(10) given in [10].
In Figs. 2 and 3 and in Fig. 1 in Ref. [10] we plot the

average electron momenta hpe
zi and ion momenta hpi

zi
using the extended beyond-dipole SFA amplitude (19).
Circularly polarized pulses are used except in Fig. 1 in
Ref. [10] in which linearly polarized pulses are also used
(dashed lines). In Fig. 2 the electron momentum hpe

zi and
the average electron energy hEeli=c are plotted as a
function of laser intensity for Ne atoms at λ ¼ 800 nm.
Both depend linearly on the laser peak intensity and have
the same slope. This suggests that we replot hpe

zi in Fig. 3
as a function of the average electron energy hEeli. We also
show in Fig. 3 hpe

zi obtained for a Ne with that for an

Ar atom at larger wavelength, λ ¼ 1400 nm and in Fig. 1
in Ref. [10] for a H atom at λ ¼ 800 nm. Next we find that
a following simple fit

hpe
zi ¼ hEeli=cþ 0.3Ip=c; hpi

zi ¼ 0.7Ip=c ð21Þ

describes well the relations between hpe
zi and average

electron kinetic energy hEeli ¼ hp2
e=2mei for all three

cases shown in Fig. 3 and in Fig. 1 in Ref. [10]. We

FIG. 2 (color online). (Triangles) Electron average momenta
along the propagation direction (Oz) obtained using the nondi-
pole SFA model as a function of the laser intensity (circular
polarization) for Ne, are at λ ¼ 800 nm, compared with the
average electron energy hEeli and with the ponderomotive
energy Up ¼ ðeE0Þ2=ð4meω

2Þ.

FIG. 3 (color online). Same as in Fig. 2 but with hpe
zi for Ar

at larger wavelength λ ¼ 1400 nm. Horizontal lines show the
corresponding ion average momenta hpi

zi.
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emphasize that the rule given in Eq. (21) works very well
for three different atoms, two wavelengths and for both,
circular and linear polarizations, the latter is illustrated in
Fig. 1 in Ref. [10] for a H atom. Figure 2 also shows the
average ion momenta hpi

zi as a function of hEeli=c
calculated using the first term in Eq. (14) and the relation
hPc:m:i ¼ ðEel þ IpÞ=c. Clearly, the ion momenta follow
horizontal lines satisfying the simple universal relation
hpi

zi ¼ 0.7Ip=c showing very different dependence on
electron energy from the case of simple photoelectric
effect, see Fig. 1, which shows that for large electron
energy the ion momenta are negative and decrease linearly
as a function of the electron energy. Figure 3 shows that the
rule given in Eq. (21) even works for low electron energies
hEeli; however, this result can be unreliable since the SFA
is only valid for hEeli larger than Ip. We observe in Fig. 1
in Ref. [10] some deviations from the simple linear rule
Eq. (21) at low electron energies for linear polarization.
Note that the slope of one in the intense field, multiphoton
regime is smaller than in the one-photon regime where
slope equals ð8=5Þ. Moreover, the shift by 0.3Ip=c is absent
in the 1-photon process, Eq. (1). We believe that this
upward shift is related to the Lorentz-force experienced
by the bound electron before (and during) the tunneling
leading to the lowering of the tunneling rate in the Oz
direction as discussed in Ref. [7].
Figures 2 and 3 show predictions of our extended (beyond

the dipole approximation) SFA model for the laser pulse
having a Gaussian envelope (9). In the standard SFA one
uses a monochromatic pulse allowing us to use the expan-
sion in which (for circular polarization) the Bessel functions
[3,10] JnðxnÞ appear. Using the relativistic Volkov wave
function Eq. (15) leads to the following rescaling of the
Bessel functions argument: xn → Gðpe

zÞxn [18,19]. This
rescaling effectively lowers the tunneling rate of electrons
which emerge in the beam propagation direction [7].
In conclusion, we have demonstrated the existence of

universal relations describing the photon momentum shar-
ing between an electron and ion in two specific, one-photon
and multiphoton, regimes of atomic photoionization proc-
esses. These results suggest a set of interesting experiments
for the future involving infrared or UV laser pulses, in
which electron and ion momenta would be measured.
In general, in intense fields a large transfer of photon
momentum occurs to nuclei from the center of mass and
cannot be neglected. Extending these new physical effects
will also allow the photon induced nonadiabatic effects in

molecules [20] and in molecular imaging by photoelectron
ionization to be examined [21].
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