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We present a theoretical study of the photoelectron attosecond beating due to interference of two-photon
transitions in the presence of autoionizing states. We show that, as a harmonic traverses a resonance, both
the phase shift and frequency of the sideband beating significantly vary with photon energy. Furthermore,
the beating between two resonant paths persists even when the pump and the probe pulses do not overlap,
thus providing a nonholographic interferometric means to reconstruct coherent metastable wave packets.
We characterize these phenomena by means of a general analytical model that accounts for the effect of
both intermediate and final resonances on two-photon processes. The model predictions are in excellent
agreement with those of accurate ab initio calculations for the helium atom in the region of the N ¼ 2

doubly excited states.
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Attosecond experiments [1–3] can provide a time-
resolved view [4] of the ultrafast electron dynamics that
occurs in atoms and molecules (see, e.g., Refs. [5–7]).
A popular approach is the technique of reconstruction
of attosecond beating by interference of two-photon
transitions (RABBIT) [8]. In this technique, a pump
extreme-ultraviolet attosecond-pulse train (XUV-APT) is
used in association with a compressed infrared (IR) probe
pulse to ionize the target atom or molecule, and the
photoelectron spectrum is recorded as a function of the
pump-probe time delay, τ. In the long-pulse limit, the APT
only contains photons of frequencies ωH2nþ1

, which are odd
multiples H2nþ1 of the IR carrier frequency ωIR. Thus, the
transition amplitudes for the two paths leading to the same
photoelectron energy, Aþ ℏωH2n�1

∓ℏωIR → Aþ þ e−,
interfere, giving rise to a sideband SB2n whose intensity
oscillates as a function of τ with frequency 2ωIR and phase
shift φ2n given by the relative phase between the two
consecutive H2n�1 harmonics and the so-called relative
atomic phase [9]: ΔI2n ∼ cosð2ωIRτ þ φ2nÞ. The RABBIT
technique, therefore, can be used to reconstruct either the
APT from the harmonic phases [10], if the atomic phases
are known, or the atomic phases [11–13], if the APT shape
is known.
An appealing perspective is to use attosecond technol-

ogies to investigate photoionization processes governed
by electron correlation [14–17]. In particular, correlation
is responsible for the Auger (or autoionization) decay of
multiply-excited states, a resonant process that may require
several tens of femtoseconds to complete. Consequently,
as for bound states [18–22], the presence of autoionizing
states, either as intermediate or final states, can dramati-
cally alter the atomic photoionization spectra [23–35].
RABBIT has been used to investigate resonant processes

in which the contribution of the direct-ionization amplitude
is negligible, namely, when bound electronic states are
directly excited by the XUV-APT (as in helium [19]) or
when autoionizing vibronic states are populated by the
XUV-APT without simultaneous excitation of the ioniza-
tion continuum (as in the N2 molecule [36]). These
RABBIT experiments [19,36] are compatible with a jump
of π in the sideband phase shift, as the energy of one of
the adjacent harmonics traverses the resonant intermediate
state. To our knowledge, RABBIT has never been used when
both nonresonant continuum and resonant amplitudes con-
tribute to the total ionization amplitude in similar amounts, a
circumstance that is the rule more than the exception, e.g.,
when atomic doubly excited states (DES) are populated from
the ground state. Furthermore, the lifetimes of autoionizing
resonances are often comparable to or larger than the
duration of the ultrashort pulses employed in common
attosecond pump-probe schemes. As a consequence, even
in perturbative conditions, a stationary regime is never
achieved and the stationary models used to extract dynamical
information from RABBIT are outright inapplicable. All the
above leads to obvious complications in the analysis of the
RABBIT spectrum.
In this Letter, we theoretically analyze the effect of

intermediate and final autoionizing states on the RABBIT
photoelectron spectrum of He. To do so, we have solved
the full dimensional time-dependent Schrödinger equation
(TDSE) by using a nearly exact method [9,30,37] and
interpreted these results in terms of an analytical time-
resolved model, based on Fano’s autoionization theory
[38], which, from a minimum set of parameters, is able to
reproduce with high accuracy the ab initio photoelectron
spectrum for arbitrary pulses. We focus, in particular, on
He DES lying below the N ¼ 2 excitation threshold of the
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Heþ parent ion [39–41]. Our results show that, when
intermediate autoionizing states are involved, the
RABBIT photoelectron spectra do not follow the existing
picture. First, as a consequence of the finite pulse duration,
the frequency of the sideband oscillation is no longer 2ωIR,
and it displays a pronounced resonant modulation. Second,
as a consequence of the interplay between the resonant and
nonresonant contributions, the local phase shift does not
undergo a π excursion anymore. Finally, RABBIT oscil-
lations persist even when the time delay is so large that
the probe pulse does not overlap with the APT anymore.
The local beating phase can then be used to reconstruct
the coherent metastable wave packet created by the pump
pulse.
Figure 1 shows a representative example of ab initio

results based on the solution of the TDSE for the helium
atom ionized from the ground state with an XUV-APT in
conjunction with a weak 845-nm IR pulse. Figure 2 (top)
shows the SB38–42 sidebands that arise when the spþ

2 DES
is resonantly excited by the H41 harmonic (ℏωIR ¼
1.466 eV). The peak intensity and the full width at half
maximum (FWHM) of the APTare IAPT ¼ 5 GW=cm2 and

FWHMAPT ¼ 6.8 fs, and those of the IR-probe pulse
are IIR ¼ 10 GW=cm2 and FWHMIR ¼ 7.2 fs. One can
clearly see a local phase shift of the sidebands that increases
approximately linearly in a wide time-delay interval. Stated
otherwise, the resonance alters the RABBIT beating
frequency itself.
To understand this behavior, we have developed a model

in which the standard formulation of second-order pertur-
bation theory is extended to account for the finite duration
of the pulse. In this model, the transition amplitude between
an initial state i of energy Ei and a final state f of energy Ef
is (atomic units are used unless otherwise stated)

Að2Þ
f←i ¼ −i

Z
∞

−∞
dω ~AIRðωfi − ωÞ ~AAPTðωÞMfiðωÞ; ð1Þ

where

MfiðωÞ ¼ α2hψfjPzG
þ
0 ðEi þ ωÞPzjψ ii ð2Þ

is the usual monochromatic two-photon transition ampli-
tude in velocity gauge, ωfi ¼ Ef − Ei, α is the fine-
structure constant, Gþ

0 ðEÞ ¼ ðE −H þ i0þÞ−1 is the
retarded resolvent of the field-free Hamiltonian, Pz is
the electron momentum operator, and ~AIR;APTðωÞ ¼
ð2πÞ−1=2 R dtAIR;APTðtÞ expðiωtÞ are the Fourier transforms
of the vector potentials along the polarization axis. The

Að2Þ
f←i amplitude includes two contributions, Aþ and A−,

which correspond to the absorption of an XUV photon
from the H2n�1 harmonic followed by the coherent emis-
sion or absorption of an IR photon. The intensity of
the sideband is given by the square module of the total
amplitude,

FIG. 1 (color online). Left panel: The ab initio photoelectron
spectrum for the XUV-APT-pump weak-IR-probe ionization of
He in the region of the N ¼ 2 DESs as a function of pump-
probe time delay. The APT is centered at ℏωAPT ¼ 57.21 eV
(IPHe ¼ 24.6 eV), with fundamental frequency ℏωIR ¼
1.466 eV; both the pump and the probe have FWHM of about
7 fs. Central panel: Signal at a fixed time delay (white dashed
line). Right panel: Outline of the relevant states in the process.
Starting from the 1s2 ground state, the atom absorbs a XUV
photon from the APT and exchanges an IR photon with the probe
pulse, leading to strong H2nþ1 harmonic signals in the 1Po

continuum and to weak SB2n sideband signals in the 1Se and 1De

continua.

FIG. 2 (color online). Calculated spectrum of the SB38, SB40,
and SB42 sidebands, as a function of pump-probe time delay,
for the fixed carrier energy ℏωIR ¼ 1.466 eV. Top panel:
The ab initio results. Central panel: Results from the model
(see text). Bottom panel: Difference between the position of the
maxima in sidebands SB42 and SB40. The SB42 beating frequency
is higher than for SB40 due to the resonant excitation of the spþ

2

DES by the H41 harmonic.
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ISBðτÞ ¼ jAþðτÞj2 þ jA−ðτÞj2 þ 2ℜe½Aþ�ðτÞA−ðτÞ�:
ð3Þ

The local phase φðωIR; τÞ of the sideband modulation is the
argument of the complex interference term Aþ�ðτÞA−ðτÞ,
and it can be decomposed in the usual phase 2ωIRτ plus an
additional dephasing φ2nðωIR; τÞ that, in general, depends
on both frequency of the laser and time delay.
In the absence of intermediate and final autoionizing

states, which is the usual scenario for RABBIT spectros-
copy, and for electron energies much larger than ωIR, the
two amplitudes take on the form

A� ¼ F ðτÞe∓iωIRτwðz�dirÞ; ð4Þ

where F ðτÞ is a factor common to both A� amplitudes
[42], wðzÞ is the special function expð−z2Þ½1 − erfð−izÞ�
[43], z�dir ¼ σtðω� − ωfiÞ=

ffiffiffi
2

p
, σt is the time interval in

which the pump and probe pulses overlap, and ω� ¼
ωH2n�1

þ ½ðωfi − 2nωIRÞ=σ2IR − iτ�=σ2t . Equation (4) is the
generalization of the known expression for cw light [44]
to Gaussian pulses.
Here, we are interested in analyzing how the usual

appearance of the nonresonant RABBIT spectra described
by Eq. (4) (or its equivalent monochromatic version of
Ref. [44]) is modified when autoionizing states are popu-
lated. To do so, we follow the standard Fano approach [38]
and express the continuum states as

jψEi ¼jEi þ
�Z

dεjεi Vεa

E − εþ i0þ
þ jai

�
VaE

E − ~Ea

; ð5Þ

where jEi is the nonresonant continuum leading to the
nonresonant amplitudes (4), jai is the localized part of
an isolated autoionizing state of energy Ea þ Δa (Δa is
the so-called energy shift [38]) and autoionization width
Γa ¼ 2πjVaEa

j2, ~Ea is the complex resonance energy ~Ea ¼
Ea þ Δa − iΓa=2, Vnm is the Hamiltonian coupling
between states n and m, and the integral within the
parentheses is the so-called modified continuum. To
simplify the notation, we have only considered a single
autoionizing state jai and a single ionization channel.
From Eq. (5), the transition amplitude (2) for the case of

a single intermediate autoionizing state can be written as
the sum of a slowly varying direct-ionization component
Mdir

fi and a resonant component Mres
fi ∝ ðωH2n�1

− ω ~aiÞ−1,
where ω ~ai ¼ ~Ea − Ei. As the harmonic frequency ωH2n�1

traverses the resonance, the Mfi amplitude describes a
circle in the complex plane. If Mdir

fi is negligible, the circle
starts and ends at the origin, and its phase increases by π in
going from below to above Ea [Fig. 3(a)]. In the more
common case of a non-negligibleMdir

fi , the circle is shifted
with respect to the origin [Fig. 3(b)] and, consequently, its

phase changes as one traverses Ea but goes back to its
initial value. For finite pulses, the convolution with their
spectral function in Eq. (1) contracts the circle, thus
reducing the phase variation [Fig. 3(c)]. The corresponding
A� amplitudes are

A� ¼ F ðτÞe∓iωIRτ½wðz�dirÞ þ ðβfa − ϵ−1faÞðq0a − iÞwðz�a Þ�;
ð6Þ

where, in addition to the nonresonant contribution given in
Eq. (4), one can immediately recognize an additional term
due to the presence of the autoionizing state a. In this term,
z�a ¼ σtðω� − ω ~aiÞ=

ffiffiffi
2

p
and ϵfa ¼ 2ωfa=Γa is the reduced

energy as defined by Fano [38]. The parameters in the
resonant part of the amplitude measure the relative strength
of different transitions: from the ground state to the
resonance vs to the intermediate continuum (q0a ¼ Oia=
πVEaOiE) and to the final state from the resonance vs
from the intermediate continuum (βfa ¼ πOfajVaEj=R
dE0OEfE0 ). Here, Omn is the generic dipole-transition

integral hψmjPzjψni.

FIG. 3 (color online). Top panel: Sketch of the transition
amplitude in the complex plane and its phase profile for
(a) Mdir

fi ¼ 0, (b) Mdir
fi ≠ 0, (c) Mdir

fi ≠ 0 and finite pulse
duration (see text). On the bottom left: Sidebands SB40 and
SB42 vs ωIR, for τ ¼ 0, computed (d) ab initio and (e) with the
model. (f–h): Comparison of the phase shifts, in the [0, TIR=2]
time-delay interval, of the energy-integrated signals. The gray
thick solid line is the ab initio calculation, the red solid line
and blue dashed line are the model prediction with one and
two intermediate resonances, respectively (FWHMIR ¼ 7.2 fs,
FWHMAPT ¼ 6.8 fs), and the green solid line is the model
prediction for FWHMIR ¼ 30 fs and FWHMAPT ¼ 10 fs. The
spþ

2 resonance gives rise to a large peak in the dephasing between
the two sidebands.
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From the expression of the A� amplitudes given in
Eq. (6), it is a simple task to derive the sideband phase
φ2nðωIR; τÞ as a function of the minimal set of resonant
atomic parameters. Conversely, these parameters can be
determined by comparing the model predictions with a few
selected experiments [42]. We applied this latter procedure
to He by using our nearly exact ab initio solutions of the
TDSE [9,30,37] as “numerical experiments.”
Figure 2 (central panel) shows the results obtained with

our model. The agreement with the ab initio results is
excellent. The population of the spþ

2 state by H41 results in
a sideband frequency modulation of δω ¼ −0.073 eV,
which is obtained by Fourier analyzing the energy-inte-
grated sideband signal. This value is nearly the same as that
obtained from the ab initio calculations (Fig. 2, top panel).
It is important to stress that, in the absence of intermediate
resonances, the finite duration of the pulses already induces
a redshift of δω ¼ −0.038 eV, due to the fact that the
nonresonant component Mdir

fi is inversely proportional to
the energy of the last exchanged IR photon, thus amplifying
the low-frequency components in the beating. Removing
this nonresonant detuning, the frequency modulation due to
the spþ

2 resonance is −0.035 eV, i.e., 1.2% of 2ωIR, which
corresponds to a change in the RABBIT period of 17 as.
To a good approximation, the frequency detuning is nearly
independent of τ; i.e., the phase shift φ2n is well described
by its first-order approximation φ2nðωIR; τÞ ¼ φ0

2nðωIRÞ þ
δωðωIRÞτ (Fig. 2, bottom panel).
Figures 3(d) and 3(e) show the energy-resolved SB40

and SB42 sidebands, computed either ab initio or with the
model, as a function of the IR photon energy [equivalent to
the harmonic-DES detuning, δH2nþ1−a ¼ ð2nþ 1ÞωIR − ωai]
for a fixed time delay, τ ¼ 0, close to the minimum of the
beating. In this case, the model included the two bright spþ

2=3

intermediate 1Po resonances as well as the final 1S 2p2

resonance. These two plots illustrate well two aspects of the
effects of resonances in RABBIT experiments. First, while
the upper sideband displays a maximum at negative and a
minimum at positive detuning of the H41 resonant harmonic
energy with respect to the excitation energy of the spþ

2 state
from the ground state, the opposite is true for the lower
sideband. Second, due to the strong spþ

2 − 2p2 coupling, the
2p2 state already starts populating when the spþ

2 state is
resonant with the H41 harmonic (ℏωIR ¼ 1.466 eV), i.e.,
well before the 2p2 state is resonant with the SB42 side-
band (ℏωIR ¼ 1.478 eV).
These aspects are reflected in the sideband phase shift

vs resonance-detuning plots shown in Figs. 3(f)–3(h). The
phase profile is clearly very different from a π jump, and it
becomes even more pronounced when longer pulses are
used (30 fs). In either case, the dephasing is sufficiently
large (0.8 and 2.5 rad) to be experimentally observable
[45]. The signature of the upper spþ

3 DES, which is
resonant at ℏωIR ¼ 1.48 eV, is recognizable in Fig. 3(f).

Indeed, inclusion of the spþ
3 state brings the model into

much better agreement with the simulation.
Figure 4 shows the SB40;42 sidebands in a wide range of

time delays for ωIR ¼ 1.475 eV. When the APT and the IR
pulse overlap (jτj≲ 5 fs), the sidebands are dominated by
the nonresonant signal and are centered at E ¼ 2nωIR − IP,
where IP is the ionization potential. Between 5 fs and 10 fs,
the nonresonant contributions disappear, while the side-
bands narrow and shift to symmetric positions around the
two resonances. In contrast with nonresonant two-photon
transitions, the sideband signals persist even when the
pump and the probe do not overlap. Furthermore, the SB42

sideband displays the characteristic interference fringes
of the spþ

2 − spþ
3 beating, with a lifetime intermediate

between those of the two resonances. The strongest
contribution to the sideband comes from the transition to
the 2p2 state, which is permitted even at the level of the
independent-particle approximation. The q parameters for
the excitation of the 2p2 state from either the spþ

2 or the
spþ

3 state differ, thus giving rise to an oscillating effective
qeffðτÞ that manifests as a beating of the background
continuum out of phase with respect to that of the final

FIG. 4 (color online). Bottom panel: Spectrum of the SB40;42
sidebands vs τ computed with the model, for ℏωIR ¼ 1.475 eV.
The harmonics H41 and H43 (not shown) are detuned from the
spþ

2 and spþ
3

1Po DES by δH41−spþ
2
¼ 0.37 eV and δH43−spþ

3
¼

−0.19 eV, respectively. Top panel: The modeled final 2p2

resonant signal (red solid line), which dominates the spectrum,
reproduces the ab initio prediction (gray thick solid line) with high
accuracy.
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resonance. This beating could be used to reconstruct the
autoionizing wave packet, following concepts similar to
those based on the holographic principle [46].
In conclusion, we have solved the TDSE and developed

an analytical model for the two-photon ionization of atoms
with finite pulses, in the presence of autoionizing states.
The model shows that both the contribution of intermediate
continuum states and the finite duration of the light pulses
must be taken into account to achieve qualitatively correct
interpretations of resonant attosecond pump-probe experi-
ments. In particular, we have demonstrated that (i) inter-
mediate resonances manifest themselves in RABBIT
experiments with variations in the sideband phase shift
and beating frequency as a function of the fundamental
carrier frequency, and (ii) resonances in the final states
appear in the photoelectron spectrum as Fano-like profiles,
strongly modulated with respect to the pump-probe time
delay and out of phase with respect to the background
signal. For the realistic cases we have examined, the
variation of the sideband phase shift should be detectable
with current instrumental resolution. Despite its simplicity,
the model is able to provide results in quantitative agree-
ment with accurate ab initio solutions of the TDSE, thus
permitting us to explore a vast range of pulse parameters
at a negligible computational cost or, conversely, to extract
radiative-transition strengths between multiply-excited
states, which are hard to obtain otherwise. In addition,
we have found that long-lived resonances excited by
consecutive harmonics give rise to sideband beatings that
persist even when the pump and probe pulses do not
overlap and from which the coherent metastable wave
packet can be reconstructed. These conclusions remain
valid when non-Fourier-limited pulses or XUV frequencies
that are not strictly multiples of the IR frequency are
used [42].
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