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We optimize chiral interactions at next-to-next-to leading order to observables in two- and three-nucleon
systems and compute Gamow-Teller transitions in '“C and 2>%>*O using consistent two-body currents. We
compute spectra of the daughter nuclei '*N and ?>>*F via an isospin-breaking coupled-cluster technique,
with several predictions. The two-body currents reduce the Ikeda sum rule, corresponding to a quenching
factor ¢ ~ 0.84-0.92 of the axial-vector coupling. The half-life of '*C depends on the energy of the first
excited 17 state, the three-nucleon force, and the two-body current.
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Introduction.—f decay is one of the most interesting
processes and most useful tools in nuclear physics. On the
one hand, searches for neutrinoless double-f decay probe
physics beyond the standard model and basic properties of
the neutrino; see Avignone et al. [1] for a recent review. If
neutrinoless double-$# decay is observed, an accurate
nuclear-physics matrix element is needed to extract neu-
trino masses from the lifetime. On the other hand,  decay
of rare isotopes populates states in exotic nuclei and
thereby serves as a spectroscopic tool [2,3]. The theoretical
calculation of electroweak transition matrix elements in
atomic nuclei is a challenging task because it requires an
accurate description of the structure of the mother and
daughter nuclei and an employment of a transition operator
that is consistent with the Hamiltonian.

For the transition operator, the focus is on the role of
two-body currents (2BCs) from chiral effective field theory
(yEFT) [4]. Two-body currents are related to three-nucleon
forces (3NFs) [5,6] because the low energy constants
(LECs) of the latter constrain the former within yEFT.
Consistency of Hamiltonians and currents is one of the
hallmarks of an EFT [7], and 2BCs are applied in
electromagnetic processes of light nuclei; see Kolling et al.
[8], GrieBhammer et al. [9], and Pastore ef al. [10], and see
Bacca and Pastore [11] for a recent review. For weak
decays, only the calculation of triton f decay [12,13], the
related  decay on *He and the deuteron [14], and proton-
proton fusion [15] exhibits the required consistency, while
the very recent calculation of the neutral-current response
in '2C employs phenomenological 3NFs and 2BCs [16].

The one-body operator g4 > 4, 6;7F induces Gamow-
Teller transitions. Here, g4 is the axial-vector coupling, ¢
denotes the spin, and 7 changes the isospin. Gamow-
Teller strength functions [17,18] are also of particular
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interest because of their astrophysical relevance [19].
Charge-exchange measurements on 2°Zr and other
medium-mass nuclei have suggested that the total strength
for  decay is quenched by a factor of ¢>~ 0.88-0.92
[20-23] when compared to the Ikeda sum rule [24].
Similarly, shell-model calculations [25,26] suggest that
ga needs to be quenched by a factor ¢ = 0.75 to match
data. It is not clear whether renormalizations (including
2BCs) of the employed Gamow-Teller operator, missing
correlations in the nuclear wave functions, or model-space
truncations are the cause of this quenching.

Recent calculations [27-29] show that chiral 2BCs yield
an effective quenching of g,. However, the Hamiltonians
employed in these works are not consistent with the
currents (and they contain no 3NFs) and/or the 2BCs are
approximated by averaging the second nucleon over the
Fermi sea of symmetric nuclear matter. The recent studies
[30,31] of electroweak transitions in light nuclei employ
3NFs but lack 2BCs. This gives urgency for a calculation of
weak decays that employs 3NFs and consistent 2BCs.

In this Letter, we address the quenching of g, and
employ 3NFs together with consistent 2BCs for the
computation of f decays and the Ikeda sum rule. We study
the f decays of '*C and ???*O with interactions and
currents from yEFT at next-to-next-to leading order
(NNLO) for cutoffs A)( =450, 500, 550 MeV. For the
states of the daughter nuclei, we generalize a coupled-
cluster technique and compute them as isospin-breaking
excitations of the mother nuclei. We present predictions and
spin assignments for the exotic isotopes >>?*F and revisit
the anomalously long half-life of '*C [31-33].

Hamiltonian and model space.—The chiral nucleon-
nucleon (NN) interactions are optimized to the proton-
proton and the proton-neutron scattering data for laboratory
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TABLE I._ Pion-nucleon LECs ¢; and partial-wave contact
LECs (C, C) for the chiral NN interaction at NNLO using A, =
500 MeV and the spectral-function regulator cutoff Agpg =
700 MeV [37]. The ¢;, C;, and C; have units of GeV~!,

10* GeV~2, and 10* GeV™, respectively.

LEC Value LEC Value LEC Value

c —0.91940746 c¢; —3.88983848 c4 4.307 367 47
C.pS’:) —0.15136364 C"p —0.15215263 Ciy —0.15180482
Ci, 2.404 31235 CzS 0.927937 12 C%S —0.15848125
Cip, 0.414 829 08 CxP 1.26578978 Csp, —0.77998484

CsSIJDI 0.618 55040 Cst —0.67347042

scattering energies below 125 MeV and to deute-
ron observables. The y?/datum varies between 1.33 for
A, =450 MeV and 1.18 for A, =550 MeV. The 4*
optimization employs the algorithm POUNDERS [34].
Table I shows the parameters of the NN interaction for
the cutoff A, =500 MeV; the parameters for the other
cutoffs are in the Supplemental Material [35]. The param-
eters displayed in Table I are close to those of the chiral
interaction NNLO,, [36], which were fit to phase shifts.

The 3NF is regularized with nonlocal cutoffs [38,39] (to
mitigate the convergence problems documented by Hagen
et al. [40] for local cutoffs). Following Gazit et al. [13], we
optimize the two LECs (cp and cg) of the 3NF to the
ground-state energies of A = 3 nuclei and the triton life-
time. Figure 1 shows the reduced transition matrix element
(E{) = (*Hel|E}||*H) as a function of cp. Here, E is the
J =1 electric multipole of the weak axial-vector current at
NNLO [13]. The leading-order (LO) contribution to E/l‘ is
proportional to the one -body Gamow-Teller operator
E}l o =igs(6m)~1/23 "4 | 6,75 For the current, we use
the empirical value g4 = 1.2695(29) [41]. The 2BCs enter
at NNLO and depend on the LECs cp, c3, ¢4 of the chiral
interaction [42,43]. The triton half-life yields an empirical
value for (Ef)p,, which constrains ¢ and cg. For the
three different chiral cutoffs A)( = 450, 500, 550, the sets of
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FIG. 1 (color online). The quantity related to the triton half-life
<E’1‘> as a function ¢, for chiral cutoffs A, = 450, 500, 550 MeV
(dash-dotted red, dashed blue, and dotted green lines, respec-
tively) with corresponding error bands. The different lines were
determined by a fit of ¢ and c; to A = 3 binding energies.

(¢p, cg) that reproduce the triton half-life and the A =3
binding energies are (0.0004, —0.4231), (0.0431, —0.5013),
(0.1488, —0.7475), respectively. The vertical bands in
Fig. 1 give the range of cj, that reproduces <E{‘>emp within
the experimental uncertainty.

We employ an N = 12 model space consisting of N + 1
oscillator shells with frequency 7€ = 22 MeV. The 3NFs
use an energy cutoff of E5 ., = NAQ; i.e., the sum of the
excitation energies of three nucleons does not exceed E3 .-
We employ the intrinsic Hamiltonian H =T — T, +
Vyn + Vinp to mitigate any spurious center-of-mass exci-
tations [44,45]. Here, T and T , . are the kinetic energy and
the kinetic energy of the center of mass, while V yy and V3yr
are the chiral NN interaction and 3NF, respectively.

We perform a Hartree-Fock (HF) calculation and com-
pute the normal-ordered Hamiltonian Hy with respect to
the reference state |HF). We truncate Hy at the normal-
ordered two-body level. This approximation is accurate in
light- and medium-mass nuclei [46,47].

Formalism.—We compute the closed-subshell mother
nuclei '*C and *22*O with the coupled-cluster method

[48-55]. The similarity-transformed Hamiltonian H =
e THye” employs the cluster amplitudes

T=> “NIN, 1P NENIN N, 1

2NN+ 5 JZ; (1)

that create one-particle-one-hole (1 p-14) and two-particle—
two-hole (2p-2h) excitations with amplitudes ¢/ and t?jb,
respectively. Here, i, j denote occupied orbitals of the HF
reference while a, b denote orbitals of the valence space.
The operators N and N 4 create and annihilate a nucleon in
orbital ¢, respectively. It is understood that the cluster
amplitudes 7" do not change the number of protons and
neutrons; i.e., they conserve the z component 7', of isospin.
We note that |HF) is the right ground state of the non-
Hermitian Hamiltonian H. Its left ground state is
(A] = (HF|(1 4+ A), with A being a linear combination
of 1p-1h and 2p-2h deexcitation operators [54,55].

The daughter nuclei '“N and *2?*F are computed via a
novel generalization of the coupled-cluster equation-of-
motion approach [56-58]. We view the states of the
daughter nuclei as isospin-breaking excitations |R) =
R|HF) of the coupled-cluster ground state, with

¥ 1
R= Zr?p,‘ln,- + ZZFU PuN}Nn,. (2)
a

ijab

Here, p} and Py (ny and n,) create and annihilate a proton
(neutron) in orbital ¢ with amplitude r¢. The combination

N;;N‘Y either involves neutrons N;;N‘Y = n;;ns or protons

N,TIN ¢ = pZ p, and goes with the excitation amplitude rj-’jb.
We note that R lowers the isospin component 7', of the HF
reference by one unit and keeps the mass number
unchanged.
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The states of the daughter nucleus result from solving the
eigenvalue problem HR,|HF) = w,R,|HF). Here, w, is the
excitation energy with respect to the HF reference and R,
denotes a set of amplitudes R, = (r{(a), r{/ (a)). We also
introduce the left-acting deexcitation operator

L= Zlénjpa
ia

and solve the left eigenvalue problem (HF|L;H =

ZldbnTNTNbpa (3)
zjab

ws(HF|Lg. Here, [, and lifb are the corresponding 1p-1h
and 2p-2h deexcitation amplitudes. The left and right
eigenvectors are biorthogonal ie., (HF|L,R4HF) =

Zialél( ) (/}) +3z Zz]abl ( ) (ﬁ) - 5aﬂ

The operators R and L in Egs. (2) and (3) excite states in
the daughter nucleus that results from £~ decay. If instead
we were interested in 7 decay, we would employ R' and
L' and solve the corresponding eigenvalue problems. Our
approach allows us to compute excited states in the
daughter nucleus that are dominated by isospin-breaking
1p-1h excitations of the closed-shell reference |HF) (with
2p-2h excitations being smaller corrections).

Results.—The spectra for "N and ??>?*F are shown in
Fig. 2 for A, =500 MeV and compared to data. The
sensitivity of our results on the chiral cutoff A, is shown
as bands for selected states. The odd-odd daughter nuclei
N and ?>?*F exhibit a higher level density than their
mother nuclei. Overall, 3NFs increase the level densities
slightly and yield a slightly improved comparison to
experiment. For ?>2*F, we make several predictions and
spin assignments. In these isotopes, our spectra also
compare well to shell-model calculations by Brown and
Richter [59]. Low-lying excitation energies changed by less
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FIG. 2 (color online). Spectra of the odd-odd daughter nuclei
N and ?>?*F resulting from the NN interaction with chiral
cutoff A, =500 MeV (blue lines) and the NN interaction and
3NF at NNLO with chiral cutoff A, =500 MeV (red lines),
compared to experiment (black lines). Bands from variation of the
chiral cutoff A, = 450-550 MeV are shown for the 07,2, 1%
and the 2%, 1" excited states in '“N and *F, respectively. The
band with diagonal gray lines in N is for the 1t excited state.
Parentheses indicate tentative spin-parity assignments.

than 5% when going to E3 .« = 147, and 15% is an error
estimate including the error from truncating at the coupled-
cluster 2p-2h level.

For a better assessment of systematic uncertainties, we
compared the results at LO, NLO, and NNLO for
A, =500 MeV. For the ground-state energy of 4C, we
find —60.5, —93.2, and —74.4 MeV, respectively, hinting at
a slow convergence with respect to the chiral power
counting and a significant underbinding with respect to
the experimental value of —105.3 MeV. Similar results are
obtained for ?>2*Q. The convergence is faster for the
excited states. The excited J* = 0" (J* =11) [J* =271]
state in “Nisat 2.1, 2.8, 2.1 MeV (1.7, 5.6, 4.4 MeV) [0.7,
4.9, 4.4 MeV] in LO, NLO, NNLO, respectively. We also
note that the ground-state energies of the daughter nuclei
14N, 2224F are 0.54, —2.62, and —6.55 MeV with respect to
their corresponding mother nuclei, in fair agreement with
experiment. Thus, the systematic uncertainty due to the
Hamiltonian is significant for ground states but less of a
concern for the excited states discussed in this Letter. The
underbinding of the present Hamiltonian suggests that the
role of 3NFs and/or higher-order EFT corrections might be
more complicated than proposed by Ekstrém et al. [36].

Within the coupled-cluster framework, we compute the
total strengths

S; = (AOgr O |HF), = (A|O&r Ogr [HF)
for p* decays. Here, Ogr is the similarity-transformed
Gamow-Teller operator

Ocr = OE}% GT =g;'V3 \/_EA (4)

The one-body operator is O(C;T =0x mEA|LO, and the

two-body operator Og% is from the 2BC at NNLO, with a

local regulator and with the same cutoff as the interac-
tion [42,43].

The Ikeda sum rule is S_—S, =3(N-2) for

Ogr = Og% This identity served as a check of our
calculations. Our interest, of course, is in the contribution

of the 2BC operator 0(G2T) to the total § decay strengths S, .
We considered two approximations of this two-body
operator. In the normal-ordered one-body approximation
(NO1B), the second fermion of the 2BC is summed over
the occupied states of the HF reference. In the second

approximation, we add the two-body operator O(GZ% ~ O(GZT)

to the NO1B contribution. This is the LO coupled-cluster

contribution of Og% and it is a smaller correction to the

NOIB contribution for the nuclei we study.

Figure 3 shows the quenching factor ¢> = (S_ —S,)/
[3(N-2Z)] for C and *?*O. For the cutoff A, =
500 MeV, we vary cp between —0.9 and 0.9 and fix cg
such that the binding energies of the A =3 nuclei are
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FIG. 3 (color online). The quenching factor ¢> for '*C (solid
black line), 220 (dashed red line), and 2*O (dash-dotted blue line)
for different cp values. The calculations used NN and 3NF with
consistent 2BCs. The gray area marks the region of ¢, that yields
the triton half-life and shows the cutoff dependence. The dotted
lines show the NO1B results.

reproduced. The ground-state energies and excited states in
14C and 222%F are insensitive to this variation. Thus, the
dependence of (S_—S,)/[3(N—2)] on c¢p is due to
2BCs. The NO1B approximation (shown as dotted lines)
yields a major part of the quenching. The sensitivity of our
results to the chiral cutoffs (A;r =450, 500, 550 MeV) is
shown as the gray band for values of c¢p and cg that
reproduce the triton half-life. The quenching factor depends
on the nucleus, with q2 ~ 0.84-0.92 due to 2BCs for the
studied nuclei, consistent with Ref. [28]. We recall that
g*> ~0.88-0.92, extracted from experiments on *°Zr
[21-23], are within our error band. We also computed
the low-lying strengths for f~ decay and found that only
70%—80% of the total strength S, is exhausted below
10 MeV of excitation energy.

Let us finally turn to the 3~ decay of '*C. The long half-
life of this decay, about 5700a, is used in carbon dating of
organic material. This half-life is anomalously long in the
sense that it exceeds the half-lives of neighboring f
unstable nuclei by many orders of magnitude. Recently,
several studies attributed the long half-life of '*C to 3NFs
[31-33], while the experiment points to a complicated
strength function [60]. What do 2BCs contribute to this
picture? To address this question, we compute the matrix
element (E1) = ("N|E}|'*C) that governs the - decay of
14C to the ground state of "*N, with ¢j, and ¢y from the
triton lifetime. Figure 4 shows the various contributions to
the matrix element. In agreement with Maris ez al. [31] and
Holt et al. [33], 3NFs reduce the matrix element signifi-
cantly in size, and our result is similar in magnitude to that
reported by Maris et al. [31]. However, 2BCs counter this
reduction to some extent, with the NO1B approximation
and the LO approximation both giving significant contri-
butions. Our results for (E{) from 2BCs and 3NFs are
between 5 x 1073 and 2 x 1072. This is more than an order

0003 B = A =450 MeV, E_ (1) =5.60 MeV
\
N o—e A =500MeV,E_ (I ") =4.41 MeV
\ +
0.002 \\ 0—‘0AX=550 MeV, Eex(l )=3.35MeV |

ANE+NN
odl

SNy gz+od1
ANE+NN
OlHgz+odl

FIG. 4 (color online). The squared transition matrix element for
p~ decay of 'C from increasingly sophisticated calculations
(from left to right). NN, 1BC: NN interactions and one-body
currents (1BCs) only; NN + 3NF, 1BC: addition of 3NF;
NN + 3NF, 1BC + 2BCyqp: addition of 2BC in the NOI1B
approximation; and NN + 3NF, 1BC + 2BC;: addition of
leading-order 2BC.

of magnitude larger than the empirical value (E7).y, ~
6 x 107* extracted from the 5700a half-life of '*C. In g~
decay of *C, 2BCs increase the strength of the transition to
the '“N ground state, while they yield an overall quenching
(of the sum rule) when all transitions are considered.

We also find that the matrix element (E4') depends on the
energy of the first excited 17 state in '“N. For the three
different cutoffs A;( = 450, 500, 550 MeV, this excited 17
state is at 5.69, 4.41, 3.35 MeV, respectively (compared to
3.95 MeV from experiment). As the value of (E') decreases
strongly with decreasing excitation energy, a correct
description of this state is important for the half-life in *C.

Summary.—We studied = decays of '*C and ?>2*0.
Because of 2BCs, we found a quenching factor ¢~
0.84-0.92 from the difference in total # decay strengths S_ —
S when compared to the Ikeda sum rule value 3(N — Z). To
carry out this study, we optimized interactions from yEFT at
NNLO to scattering observables for chiral cutoffs A, = 450,
500, 550 MeV. We developed a novel coupled-cluster
technique for the computation of spectra in the daughter
nuclei and made several predictions and spin assignments in
the exotic neutron-rich isotopes of fluorine. We find that
3NFs increase the level density in the daughter nuclei and
thereby improve the comparison to data. The anomalously
long half-life for the p~ decay of '*C depends in a
complicated way on 3NFs and 2BCs. While the former
increase the theoretical half-life, the latter somewhat counter
this effect. Taken together, the inclusion of 3NFs and 2BCs
yields an increase in the computed half-life.
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