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Deformation, a key concept in our understanding of heavy nuclei, is based on a mean-field description
that breaks the rotational invariance of the nuclear many-body Hamiltonian. We present a method to
analyze nuclear deformations at finite temperature in a framework that preserves rotational invariance. The
auxiliary-field Monte Carlo method is used to generate a statistical ensemble and calculate the probability
distribution associated with the quadrupole operator. Applying the technique to nuclei in the rare-earth
region, we identify model-independent signatures of deformation and find that deformation effects persist
to temperatures higher than the spherical-to-deformed shape phase-transition temperature of mean-field
theory.
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Motivation.—Mean-field theory is a useful method for
studying correlated many-body systems. However, it often
breaks symmetries, making it difficult to compare its results
with physical spectra that preserve these symmetries. In
addition, although mean-field theory often predicts sharp
phase transitions at finite temperature, they are washed out
in finite-size systems. An important challenge is to find
tools to study the properties of finite-size systems within a
framework that preserves the underlying symmetries while
also allowing calculation of the quantities that describe
symmetry breaking in mean-field theory.
In nuclear physics, this issue is especially important in

the understanding of heavy deformed nuclei, which are
of wide experimental and theoretical interest. The current
theory of these nuclei is based on self-consistent mean-field
(SCMF) theory, which predicts both spherical and deformed
ground states [1] depending on the nucleus. SCMF is a
convenient tool to study the intrinsic structure of the ground
state but it breaks rotational invariance, a prominent sym-
metry in nuclear spectroscopy. The occurrence of large
deformations in the ground state and at low excitations gives
rise to rotational bands and large electric quadrupole
transition intensities between states within the bands. At
higher excitations, much less is known experimentally.
Characterization of this part of the spectrum is needed for
accurate calculation of the nuclear level density, which is
very sensitive to deformation and other structure effects;
observed level densities in rare-earth nuclei at the neutron
evaporation threshold vary by more than an order of
magnitude [2]. In addition, nuclear fission is a phenomenon
of shape dynamics, and calculation of fission rates for
excited nuclei requires their level densities as a function
of deformation [3].
Here we investigate nuclear deformation at finite tem-

perature using the auxiliary-field Monte Carlo (AFMC)
method, which is well suited to the study of the evolution of

nuclear properties with excitation energy while preserving
rotational invariance. In particular, we calculate the dis-
tribution of the quadrupole operator in the lab frame and
demonstrate that it exhibits model-independent signatures
of deformation. We use moments of this distribution to
calculate rotationally invariant observables, which allow us
to extract effective values of the intrinsic deformation and
its fluctuations. Deformations have been studied previously
by the AFMC method, but with an ad hoc prescription to
extract the intrinsic-frame properties [4]. The methods
presented here should be applicable to other finite-size
systems in which correlations beyond the mean field are
important.
Methodology.—Formally, we can examine the statistical

characteristics of nuclei at finite excitations by calculating
the thermal expectation values of observables Ô associated
with the property of interest, hÔi ¼ TrðÔe−βĤÞ=Tre−βĤ.
Here β−1 is the temperature and Ĥ is the Hamiltonian,
which we assume to be rotationally invariant. We denote
operators in the many-particle space with a circumflex, to
be distinguished from operators in the single-particle space,
which are ordinary matrices, denoted by boldface symbols.
Also, we denote the trace over the full many-particle Fock
space as Tr and the trace of matrices in the single-particle
space by tr. The probability distribution of an operator Ô,
PβðoÞ ¼ Tr½δðÔ − oÞe−βĤ�=Tre−βĤ can be calculated
using the Fourier representation of the δ function:

PβðoÞ ¼
1

Tre−βĤ

Z
∞

−∞

dφ
2π

e−iφoTrðeiφÔe−βĤÞ: ð1Þ

Equation (1) is well known for one-body observables Ô that
commute with the Hamiltonian, e.g., the number operator
and the z component of the angular momentum [5].
Nuclear shape is different in that the relevant operators,

e.g., the quadrupole operators, do not commute with the
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Hamiltonian. Nevertheless, it is possible with Eq. (1) to
define the distribution of quantum-mechanical observables
that carry information about deformation as well as energy.
The distribution (1) can be expressed in terms of the many-
particle eigenstates of Ô and Ĥ as

PβðoÞ ¼
X
n

δðo − onÞ
X
m

honjemi2e−βem: ð2Þ

Here joni are eigenstates of Ô satisfying Ôjoni¼ onjoni and
similarly Ĥjemi ¼ emjemi. Equation (2) is valid whether or
not the operators Ô and Ĥ commute. When they do
commute, they share a common basis of eigenstates such
that honjemi ¼ δm;n and the distribution (2) reduces to
its more familiar form PβðoÞ ¼

P
nδðo − onÞe−βen . Note

that in a finite model space the eigenvalues on form a
discrete set and PβðoÞ is a finite sum of δ functions.
In this work we consider the observable Ô to be

the spectroscopic mass quadrupole operator Q̂20¼P
ið2z2i −x2i −y2i Þ where the sum is taken over all nucleons.

The probability distribution PβðqÞ of Q̂20 is defined as in
Eq. (1) with Ô ¼ Q̂20 and o ¼ q.
As we will show, this distribution can be accurately

computed by the AFMC method. In principle, other
methods can also be used to evaluate Eq. (2) within the
CI shell model framework. In particular, one can use the CI
approach realized by the Monte Carlo sampling technique
of Ref. [6]. However, the intrinsic-frame properties are
not directly accessed by the operator Q̂20, which is a
laboratory-frame observable. We shall demonstrate in this
Letter that, nevertheless, the distribution PβðqÞ is sensitive
to deformation effects and that the main properties of the
deformation in the intrinsic frame can be recovered from
moments of this distribution.
Intrinsic frame quantities may be defined in terms of

the expectation values of rotationally invariant combinations
of the quadrupole tensor operator Q̂2μ (μ ¼ −2;…; 2)
[7,8]. The lowest-order invariant is quadratic, Q̂ · Q̂ ¼P

μð−ÞμQ̂2μQ̂2−μ. There is one third-order invariant defined
by coupling three quadrupole operators to angular momen-
tum zero, ðQ̂× Q̂Þ · Q̂¼ ffiffiffi

5
p P

μ1;μ2;μ3ð 2μ1 2
μ2

2
μ3
ÞQ̂2μ1Q̂2μ2Q̂2μ3 .

The fourth- and fifth-order invariants are also unique [9]
and we define them as ðQ̂ · Q̂Þ2 and ðQ̂ · Q̂Þ½ðQ̂ × Q̂Þ · Q̂�,
respectively.When the invariant is unique at a given order, its
expectation value can be computed directly from the lab-
frame moments of Q̂20, defined by hQ̂n

20iβ ¼
R
qnPβðqÞdq.

The conversion factors are given in Table I.
AFMC.—We shall use the AFMC method to evaluate

the distribution in Eq. (1) for Ô ¼ Q̂20. The AFMC
method is arguably the most powerful computational tool
for finding the ground states and thermal properties in
large-dimensional many-particle spaces. It is based on the
Hubbard-Stratonovich representation [10] of the imaginary-

time propagator, e−βĤ ¼ R
D½σ�GσÛσ , where D½σ� is the

integration measure,GðσÞ is a Gaussian weight, and Ûσ is a
one-body propagator of noninteracting nucleons moving in
auxiliary fields σ. Practical implementations require that the
Hamiltonian be restricted to one- and two-body terms, and
that the two-body terms have the so-called good sign [11].
The method has been applied to nuclei in the framework of
the configuration-interaction shell model [12–14], where it
is called the shell-model Monte Carlo method. It has been
particularly successful in calculating statistical properties
of nuclei such as level densities [15]. The distribution of Q̂20

is obtained from the Monte Carlo sampling of fields σ as a
ratio of averages

PβðqÞ ¼
�
Tr½δðQ̂20 − qÞÛσ�

TrÛσ

Φσ

�
W
hΦσi−1W : ð3Þ

Here hXiW¼R
D½σ�WσXσ=

R
D½σ�Wσ ,whereWσ¼GσjTrÛσj

is used for theMonteCarlo sampling andΦσ ¼ TrÛσ=jTrÛσj
is the Monte Carlo sign function.
For a given Ûσ , we carry out the Q̂20 projection using a

discretized version of the Fourier decomposition in Eq. (1).
We take an interval ½−qmax; qmax� and divide it into 2M þ 1
equal intervals of lengthΔq ¼ 2qmax=ð2M þ 1Þ. We define
qm ¼ mΔq, where m ¼ −M;…;M, and approximate the
quadrupole-projected trace in (3) by

Tr½δðQ̂20 − qmÞÛσ� ≈
1

2qmax

XM
k¼−M

e−iφkqmTrðeiφkQ̂20ÛσÞ;

ð4Þ
where φk ¼ πk=qmax (k ¼ −M;…;M). Since Q̂20 is a one-
body operator and Ûσ is a one-body propagator, the Fock
space many-particle traces on the rhs of Eq. (4) reduce to
determinants in the single-particle space TrðeiφkQ̂20ÛσÞ ¼
det ð1þ eiφkQ20UσÞ. Here Q20 and Uσ are the matrices
representing, respectively, Q̂20 and Ûσ, in the single-
particle space. In practice, projections are carried on the
neutron and proton number operators as well to fix the Z
and N of the ensemble [14].
We found the thermalization of Q̂n

20 to be slow with the
pure Metropolis sampling. This can be overcome by
augmenting the Metropolis-generated configurations by
rotating them through a properly chosen set of NΩ rotation
angles Ω. In practice it is easier to rotate the observables;

TABLE I. First line: the ratio of the expectation value of
the invariant of order n (see text) to the nth moment of Q̂20.
Second line: the nth moment of Q̂20 for the rigid rotor in units of
qn0 (q0 is the rotor’s intrinsic quadrupole moment).

n 2 3 4 5

Invariant 5 −5ð7=2Þ1=2 35=3 −ð11=2Þð7=2Þ1=2
Rotor 1=5 2=35 3=35 4=77
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i.e., we replace heiφQ̂20iσ by ð1=NΩÞ
P

jheiφQ̂20ðΩjÞiσ. Here
Q̂20ðΩÞ ¼ R̂Q̂20R̂

−1 with R̂ being the rotation operator for
angle Ω. Details will be given elsewhere.
We next discuss a few simple examples that can be

treated analytically or nearly so.
Rigid rotor.—As a first simple example, we consider an

axially symmetric rigid rotor with an intrinsic quadrupole
moment q0 in its ground state. The distribution of its
spectroscopic quadrupole operator in the laboratory frame
Q20 ¼ q0ð3 cos2 θ − 1Þ=2 can be calculated in closed form.
For a prolate rotor (q0 > 0)

PgsðqÞ ¼
8<
:

� ffiffiffi
3

p
q0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2 q

q0

q �−1
for − q0

2
≤ q≤ q0

0 otherwise:
ð5Þ

This distribution is shown in Fig. 1. The oblate rotor
(q0 < 0) distribution is obtained from (5) by replacing q
with −q and q0 with jq0j. The moments of the distribution
(5) can be calculated from a simple recursion relation; their
values for 2 ≤ n ≤ 5 are given in Table I.

20Ne.—As a simple illustration in nuclear spectroscopy,
we consider the light deformed nucleus 20Ne. The orbital
part of the single-particle wave functions are taken to be the
states of the N ¼ 2 harmonic oscillator shell, i.e., the sd
shell. The single-particle eigenvalues of Q20 are −2, 1, and
4 (in units of b2 [16]) with degeneracies of 6, 4, and 2,
respectively. The many-particle eigenvalues of Q̂20 for 20Ne
in the valence sd shell thus range from −8 to 16 with a
uniform spacing of 3. The distribution PβðqÞ at β ¼ 0 is
just the distribution of these eigenvalues.
We have used this nucleus as a simple test of the AFMC

method. Here we take the single-particle energies according
to the USD interaction [17] and consider an attractive
quadrupole-quadrupole interaction −χ ~Q· ~Q, with ~Q2μ¼P

ir
2
i Y2μðr̂iÞ and χ ¼ ð8π=5Þð38.5=A5=3Þ MeV=b4 [18].

In Fig. 2 we show the quadrupole distribution of the 20Ne
ground state. The discrete nature of the many-particle
eigenvalues of Q̂20 is evident; the distribution is a set of δ
functions at integers−8;−5;…; 13; 16. The envelope of the

strengths has the skewed shape that looks qualitatively
similar to the prolate rigid-rotor distribution.
SCMF.—It is instructive to compare our results with

those of the thermal SCMF, e.g., the finite-temperature
Hartree-Fock-Bogoliubov (HFB) approximation. The HFB
solution is characterized by temperature-dependent one-
body density matrix ρβ and pairing tensor κβ. In general,
two types of phase transitions can occur vs temperature, a
pairing transition and a deformed-to-spherical shape tran-
sition [19–21]. A shape phase transition is also the generic
result of a Landau theory in which the order parameter is
the quadrupole deformation tensor [22]. The vast majority
of deformed HFB ground states are axially symmetric [23],
i.e., hQ̂2μi ¼ 0 for μ ≠ 0. The second-order invariant
hQ̂ · Q̂imay be calculated in HFB by usingWick’s theorem

hQ̂ · Q̂i ¼ Q2
0 þ

X
μ

ð−Þμtr½Q2μð1 − ρβÞQ2−μρβ�

þ
X
μ

ð−Þμtr½Q2μκβQT
2−μκ�

β�; ð6Þ

where Q0 ≡ trðQ20ρβÞ is the intrinsic axial quadrupole
moment. The remaining terms on the rhs of (6) represent
the contributions due to quantal and thermal fluctuations.
We shall compare our AFMC results for rare-earth nuclei
with the HFB theory in the next section.
Rare-earth nuclei.—Here we present results for rare-

earth nuclei. The single-particle orbitals are taken from a
Woods-Saxon potential plus spin-orbit interaction; they
span the 50–82 shell plus 1f7=2 orbital for protons and the
82–126 shell plus 0h11=2; 1g9=2 orbitals for neutrons. We
use the same interaction as in Refs. [24,25]. The quadru-
pole moments are scaled by a factor of 2 to account for the
model space truncation.
We first examine 154Sm, a strongly deformed nucleus

with an intrinsic quadrupole moment of Q0 ∼ 1600 fm2, as
determined experimentally from in-band electric quadru-
pole transitions [26]. AFMC PβðqÞ distributions are shown
in Fig. 3 at three temperatures. The distributions appear
continuous because the many-particle eigenvalues of
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FIG. 1. The ground-state distribution PgsðqÞ vs q=q0 for a
prolate rotor with intrinsic quadrupole moment q0.
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FIG. 2 (color online). The AFMC ground-state quadrupole
distribution PgsðqÞ for 20Ne. The sharp δ-like peaks demonstrate
the discrete nature of the spectrum of Q̂20 and their envelope
resembles the prolate rigid-rotor distribution in Fig. 1.
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Q̂20 are closely spaced. At the lowest temperature of
T ¼ 0.1 MeV (bottom panel), e−βĤ effectively projects
out the ground-state band. We observe the characteristic
skewed distribution of the prolate rotor. The dashed line is
the rotor distribution (5) with q0 taken at the HFB value of
Q0. The middle panel is the distribution at the HFB shape
transition temperature, T ¼ 1.14 MeV. The distribution is
less skewed, but, nevertheless, it retains some trace of a
prolate character. The HFB excitation energy at this temper-
ature is about 25MeV, much higher than energies of interest
for spectroscopy and for the neutron-capture reaction.
The top panel shows the distribution at T ¼ 4 MeV. At
this high excitation the distribution is featureless and close
to a Gaussian.
We have also calculated PβðqÞ for 148Sm, which is

spherical in its HFB ground state. They are more symmetric
and change less with temperature, consistent with the
absence of a coherent quadrupole moment.
Invariants.—Figure 4 shows the second-order invariant

hQ̂ · Q̂i vs temperature T for 148Sm and 154Sm. The AFMC
results (circles) are compared with the HFB results (dashed
lines) of Eq. (6). In HFB, hQ̂ · Q̂i for 148Sm can be entirely
attributed to the fluctuation terms in (6). There is a small
kink at T ¼ 0.4 MeV associated with the pairing transition,
but by and large the curve is flat. The same is true of the
AFMC curve. In contrast, hQ̂ · Q̂i in 154Sm is very different
at low temperatures. In HFB, the intrinsic quadrupole
moment Q0 is large, and it persists up to a temperature
of the order of 1 MeV, close to the spherical-to-deformed
phase-transition temperature. The AFMC results are in
semiquantitative agreement at the lowest temperatures

showing that the intrinsic quadrupole moment is not an
artifact of the HFB. The sharp kink characterizing the HFB
shape transition [19,20] is washed out, as is expected in a
finite-size system. Nevertheless, a signature of this phase
transition remains in the rapid decrease of hQ ·Qi with
temperature. In AFMC deformation effects survive well
above the transition temperature, in that hQ ·Qi continues
to be enhanced beyond its uncorrelated mean-field value.
The second- and third-order invariants can be used to

define effective values of the intrinsic shape parameters β; γ
[27] of the collective Bohr model [28, Sec. 6B-1a]. The
model assumes an intrinsic frame in which the quadrupole
deformation parameters α2μ ¼

ffiffiffiffiffiffi
5π

p hQ̂2μi=3r20A5=3 are exp-

ressed as α20 ¼ β cos γ, α22 ¼ α2−2 ¼ ð1= ffiffiffi
2

p Þβ sin γ, and
α2�1 ¼ 0. Effective β and γ can then be determined from
the corresponding invariants

β¼
ffiffiffiffiffiffi
5π

p

3r20A
5=3 hQ̂ ·Q̂i1=2; cos3γ¼−

ffiffiffi
7

2

r
hðQ̂×Q̂Þ ·Q̂i
hQ̂ ·Q̂i3=2 : ð7Þ

In addition, we can extract a measure Δβ of the fluctuations
in β using the second- and fourth-order invariants

ðΔβ=βÞ2 ¼ ½hðQ̂ · Q̂Þ2i − hQ̂ · Q̂i2�1=2=hQ̂ · Q̂i: ð8Þ

The invariants themselves are calculated from the moments
of PβðqÞ using the relations in Table I. As expected, the
deformed 154Sm has a larger deformation β than 148Sm
(0.232 vs 0.137), but a smaller deformation angle γ (13.4°
vs 21.6°) that is closer to an axial shape. The deformed
nucleus is more rigid in that it has a smaller Δβ=β, 0.51 for
154Sm vs 0.72 for 148Sm.
Summary.—We have demonstrated that the distribution

of the axial quadrupole operator can be computed in the
AFMC method, and that it conveys important information
about deformation and the intrinsic shapes of nuclei at finite
temperature. In particular, the expectation values of β2,
β3 cos 3γ, and the fluctuation in β2 can be extracted as a
function of temperature. With these moments, it should be
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FIG. 3 (color online). Probability distributions PβðqÞ for 154Sm
at T ¼ 0.1 MeV, T ¼ 1.14 MeV (shape transition temperature),
and T ¼ 4 MeV. The low-temperature distribution is compared
with the rigid-rotor distribution (dashed line) and reflects the
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(solid circles) are compared with the HFB results (dashed lines).
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possible to construct models of the joint level density
distribution ρðβ; ExÞ ¼ ρðExÞPEx

ðβÞ, where ρðExÞ is the
total level density and PEx

ðβÞ is the intrinsic shape
distribution at excitation energy Ex. This joint distribution
is an important component in the theory of fission and will
be discussed in a future publication.
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