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Relativistic hydrodynamics simulations of quark-gluon plasma play a pivotal role in our understanding
of heavy ion collisions at RHIC and LHC. They are based on a phenomenological description due to
Müller, Israel, Stewart (MIS) and others, which incorporates viscous effects and ensures a well-posed initial
value problem. Focusing on the case of conformal plasma we propose a generalization which includes, in
addition, the dynamics of the least damped far-from-equilibrium degree of freedom found in strongly
coupled plasmas through the AdS/CFT correspondence. We formulate new evolution equations for general
flows and then test them in the case of N ¼ 4 super Yang-Mills plasma by comparing their solutions
alongside solutions of MIS theory with numerical computations of isotropization and boost-invariant flow
based on holography. In these tests the new equations reproduce the results of MIS theory when initialized
close to the hydrodynamic stage of evolution, but give a more accurate description of the dynamics when
initial conditions are set in the preequilibrium regime.
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Introduction.—The successful phenomenological descrip-
tion of soft observables in heavy ion collisions at RHIC and
LHC asserts that the quark-gluon plasma phase is formed
and in less than one Fermi after the collision subsequent
evolution till hadronization, is governed by hydrodynamic
expansion with a very small shear viscosity [1,2]. Finding
an explanation for the emergence of this collective behavior
under experimentally viable conditions based on the micro-
scopic theory, QCD, poses a timely theoretical challenge.
In consequence, much attention has recently been devoted
to the studies of equilibration processes of non-Abelian
gauge fields in a few known tractable situations, such as at
strong coupling using holography and a dual gravitational
description.
Within this approach it has been shown that viscous

hydrodynamics can work remarkably well already after a
time of order of the inverse of the local effective temper-
ature despite significant pressure anisotropy in the local rest
frame [3–6]. [The hydrodynamization in 1=T is phenom-
enologically attractive, as ballpark quantities characterizing
initialization of hydrodynamics codes, τ ¼ 0.5 Fermi and
T ¼ 500 MeV, obey τ ¼ Oð1Þ=T.] This finding suggests
that the applicability of hydrodynamics is not limited by the
size of gradient corrections to the perfect fluid stress tensor,
but rather by the presence of degrees of freedom not
described by hydrodynamics. This implies that any phe-
nomenological attempts to capture features of preequili-
brium dynamics in heavy ion collisions need to incorporate
effects of these degrees of freedom.

The holographic AdS/CFT description of N ¼ 4 super-
symmetric Yang-Mills (SYM) theory provides a direct
handle on both hydrodynamic and nonhydrodynamic
degrees of freedom in strongly coupled plasma.
Understanding the dynamics of these modes generically
requires solving numerically five-dimensional Einstein
equations, which is a formidable endeavor. The goal of this
Letter is to extract the dynamics of the least damped
nonhydrodynamic modes fromAdS/CFTand to incorporate
them in a four-dimensional description in which they are
coupled to conventional hydrodynamic quantities: local
temperatureT and flowvelocityuμ. Such a four-dimensional
description should be of definite practical utility. Moreover,
its novel structural form should have quite general
applicability.
The precise distinction between hydrodynamic and

nonhydrodynamic modes is hard to make in general, but
in the hydrodynamic phase and its vicinity equilibrium
concepts are expected to approximately apply. A natural
definition of excitations of the equilibrium plasma comes
from linear response theory and is expressed in terms of
singularities of the retarded stress tensor correlator in the
complex frequency plane.
In the case of strongly coupled holographic plasma, the

singularities are single poles leading to nonequilibrium
excitations characterized via complex dispersion relations
ωðkÞ. In a dual gravitational picture, ωðkÞ are the quasinor-
mal mode (QNM) frequencies of the black brane represent-
ing equilibrium plasma [7,8]. Nonhydrodynamic modes are
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those which are exponentially damped for any value of
momentum and, if excited, typically become physically
negligible after time of order of 1=ℑðωÞ. One also finds
that QNMs have ℜðωÞ ≠ 0 and ℑðωÞ ¼ OðTÞ, in line with
the typical hydrodynamization scale being Oð1=TÞ.
In this Letter, we focus on the dynamics of the mode with

the smallest nonvanishing ℑðωÞ, as it generically governs
the direct approach to the hydrodynamic phase.
Incorporating it in a phenomenological description includ-
ing hydrodynamic modes should improve the range of
applicability of such a description. We explicitly address
the case of N ¼ 4 SYM theory, but our considerations
should carry over verbatim to any conformal theory (or
QCD in the conformal approximation) with appropriate
values of ℜðωÞ and ℑðωÞ for the least damped mode.
Evolution equations for quasinormal modes.—In

strongly coupled field theories, expectation values of local
operators, e.g., O ¼ trF2 or Tμν, typically decay exponen-
tially when the system is perturbed out of global thermal
equilibrium, with the exception of hydrodynamic modes.
The characteristic frequencies governing this behavior can
be computed as poles of the retarded Green’s function and
depend on momentum. At sufficiently late times, only the
lowest mode gives a physically relevant contribution, e.g.,

hOi ¼
Z

d3kAðkÞe−ωITt cos (ωRTtþ ~k · ~xþ ϕðkÞ); ð1Þ

where A and ϕ are some functions and we have defined

ω=T ¼ ωRðk=TÞ þ iωIðk=TÞ: ð2Þ
In the case of holographic plasma, ωR=I are given by the
quasinormal frequencies of the black brane appearing in the
dual gravitational description. Their momentum depend-
ence has been computed numerically [8] and it is apparent
that both for O and Tμν they exhibit very weak dependence
on k up to k ≈ 2πT. As far as we know, this important
feature has not been emphasized so far. This suggests
neglecting this dependence entirely as a first approxima-
tion, which we do in the rest of the text. Under this
assumption, which we will refer to as ultralocality, the
expectation value hOi given above satisfies the following
second order differential equation:�

1

T
∂
∂t
�

2

hOi þ 2ωI
1

T
∂
∂t hOi þ jωj2hOi ¼ 0; ð3Þ

where jωj2 ≡ ω2
I þ ω2

R. Equation (3) is formally the
equation of motion of a damped harmonic oscillator. For
N ¼ 4 SYM (here and in the following this will always
mean N ¼ 4 SYM theory at large Nc and strong ’t Hooft
coupling) and O ¼ trF2 the frequencies (the QNM
frequencies at zero momentum) are [8]

ωR ≈ 9.800 and ωI ≈ 8.629: ð4Þ
The focus of interest here is the analog of Eq. (3) for the

expectation value of the energy momentum tensor, which
would be a step toward writing phenomenological equa-
tions describing the interactions of the lowest stress tensor

QNM with the hydrodynamic degrees of freedom. To this
end, note that for sufficiently near-equilibrium situations
(but not limited to hydrodynamics) the stress tensor can be
decomposed in the following way:

hTμνi ¼ Euμuν þ PðEÞðημν þ uμuνÞ þ Πμν; ð5Þ
where uνuν ¼ −1 and the symmetric tensor Πμν obeys the
Landau frame condition uμΠμν ¼ 0. For conformal field
theories considered here one also has PðEÞ ¼ 1=3E,
Πμ

μ ¼ 0. Furthermore, one defines also the “effective
temperature” T in any state as the temperature of an
equilibrium state with the same energy density.
In equilibrium Πμν ¼ 0 and the system can always be

described in the global rest frame, i.e., uμ ¼ 0 for μ ≠ t and
ut ¼ 1. Perturbations near equilibrium are thus δT, δuμ

with δut ¼ 0 and δΠμν with δΠtμ ¼ 0. Note that the
conservation equation of the stress tensor

∂μhTμνi ¼ 0 ð6Þ
always allows one to solve for the four variables given by
δT and δuμ.
At nonzero momentum, different combinations of com-

ponents of δΠμν (different channels) oscillate with different
frequencies. However, ultralocality implies that for
momenta smaller than k ≈ 2πT this effect is negligible
and the oscillation frequencies in all channels are approx-
imately the same and coincide with the frequencies in
Eq. (4). Because of this, each component of δΠμν satisfies
the same equation as Eq. (3),

�
1

T
∂
∂t
�

2

δΠμν þ 2ωI
1

T
∂
∂t δΠ

μν þ jωj2δΠμν ¼ 0: ð7Þ

Equation (7) together with Eq. (6) describe the evolution of
the lowest nonhydrodynamic degree of freedom for small
deviations from global thermal equilibrium.
Quasinormal modes in a hydrodynamic background.—

In generic situations one expects that the lowest nonhydro-
dynamic degree of freedom interacts with hydrodynamic
modes and properly accounting for these interactions turns
out to require nontrivial modifications of Eq. (7). Part of
thesemodifications can bemotivated by generalizing Eq. (3)
to describe late time equilibration of hOi on top of the
plasma described by hydrodynamics, i.e., with

Πμν ¼ Πμν
hydro ¼ −ηðTÞσμν þ…; ð8Þ

where ηðTÞ is the shear viscosity, σμν is the shear tensor, and
the ellipsis denotes terms containing two and more deriv-
atives of the hydrodynamic fields.
The naive covariantization of Eq. (3) by taking ∂t → uμ∂μ

and using T and uμ solving Eq. (6) with Πμν in hydro-
dynamic form, does not preserve the Weyl covariance of
the microscopic theory. (We neglect here the effects of the
Weyl anomaly, as in Refs. [9,10].) The latter is the statement
that, under Weyl rescaling of the background metric,
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ημν → e−2ωðxÞημν ð9Þ
bothO andTμν transform homogeneously. In general, a field
ϕ is said to transform with Weyl weight w if

ϕ → ewωðxÞϕ: ð10Þ
Thus, for example, the metric components gμν transform
with weight −2, while Tμν transform with weight 6.
These properties have led to the development of the

Weyl-covariant formulation [11], in which the equations of
conformal hydrodynamics assume a very compact form.
This formalism makes use of the (nondynamical) “Weyl
connection,”

Aμ ¼ uλ∇λuμ −
1

3
∇λuλuμ; ð11Þ

to define a derivative operator, denoted here byDμ, which is
covariant under Weyl transformations. (A general formula
can be found in Ref. [11].) We have checked, by perform-
ing an explicit gravitational calculation of the lowest
quasinormal mode in the viscous fluid background [12],
that the covariantization of Eq. (3) with the use of the Weyl-
covariant derivative, i.e., ∂t → D≡ uμDμ, reproduces the
correct result. Hence, the natural generalization of Eq. (7) is

�
1

T
D
�

2
~Πμν þ 2ωI

1

T
D ~Πμν þ jωj2 ~Πμν ¼ 0; ð12Þ

where the role of δΠ is now taken on by

~Πμν ¼ Πμν − Πμν
hydro ð13Þ

and

D ~Πμν ¼ uλð∇λ þ 4AλÞ ~Πμν − 2Aλuðμ ~Π
λ
νÞ. ð14Þ

This formula also defines the action of D on ð1=TÞD ~Πμν,
since the latter object has the same Weyl weight as ~Πμν.
Equation (12) has two key features. First, it is consistent

with Πμν transforming homogeneously under Weyl trans-
formations. Second, it preserves its transversality and
tracelessness due to the fact that Duμ ¼ 0.
As a nontrivial test of Eq. (12) we have checked that it is

obeyed by the QNM computed in [13] for the strongly
coupled plasma undergoing Bjorken expansion [14]. Even
though this is a special flow with a high degree of
symmetry, already in this case the terms coming from
the Weyl connection are nontrivial.
Generalized theories of hydrodynamics.—The Landau-

Lifschitz theory of relativistic viscous hydrodynamics is
defined by adopting as the evolution equation the con-
servation of the stress tensor [Eq. (5)] with Πμν given by
Eq. (8). However, this system of differential equations is
not hyperbolic and in general does not have a well-posed
initial value problem [15,16].
Hyperbolic theories of hydrodynamics, postulated by

Müller, Israel, Stewart, (MIS) and others [17,18], instead of
using Eq. (8) assume that the shear tensor is replaced by a
new dynamical object, Πμν

MIS, which obeys an evolution

equation involving additional phenomenological parame-
ters. A prototypical example of such an equation is�

τ̂Π
1

T
Dþ 1

�
Πμν

MIS ¼ −ησμν; ð15Þ

where τ̂Π is a dimensionless constant and the combination
τ̂Πð1=TÞ has been referred to in the literature as the
relaxation time. Equation (15) can be supplemented with
terms quadratic in Πμν and gradients of hydrodynamic
fields in such a way that solving it recursively in the
gradient expansion gives the correct form of the hydro-
dynamic stress tensor up to second order in derivatives [10]
(when referring to MIS theory in the following we will
always mean this formulation). In this approach the
relaxation time is identified with one of the second order
transport coefficients. Assuming η=s ¼ 1=ð4πÞ, the linear-
ized theory is causal as long as τ̂Π ≥ 1=ð2πÞ. The drawback
of the MIS formulation, however, is that it introduces a
spurious nonphysical decaying mode with a frequency
given by the relaxation time: ω ¼ iT=τ̂Π.
The simplest way to incorporate additional physical

nonequilibrium degrees of freedom into a causal hyperbolic
description is to set

Πμν ¼ Πμν
MIS þ ~Πμν; ð16Þ

with Πμν
MIS satisfying Eq. (15) and ~Πμν obeying Eq. (12).

These traceless and transverse quantities are coupled
together by the conservation law Eq. (6).
The resulting theory satisfies the same causality and

stability properties as the MIS formulation. At the linear-
ized level, in addition to the standard hydrodynamic modes
it contains the damped modes corresponding to the QNM
as seen in AdS/CFT. However, as a by-product of using the
MIS formulation we have in addition the spurious decaying
mode of MIS theory discussed above. In order to minimize
its impact, we always set −ηðTÞσμν as the initial condition
for Πμν

MIS. Moreover, we set the τΠ parameter to the smallest
value allowed by causality in order to maximize the
damping of this mode.
The above formulation is the simplest generalization of

MIS hydrodynamics. The equations presented here should
provide a useful extension of hydrodynamics in situations
where only a single QNM dominates the approach to
equilibrium. Setting vanishing initial conditions for ~Πμν

reduces the theory to standard MIS, while incorporating
some nontrivial initial conditions allows us to examine the
physical effects of the least damped nonhydrodynamic
degrees of freedom. This theory could be used as an
alternative to MIS hydrodynamics in situations, when an
account of early preequilibrium dynamics including modes
with ℜðωÞ ≠ 0 is relevant. We perform various tests of this
theory in the following section.
Before that, however, we would like to mention a

possible alternative which aims to get rid of the nonphysical
MIS mode altogether and use the physical nonequilibrium
degrees of freedom as a means of ensuring hyperbolicity.
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Note that since the QNMs have a sizable real frequency,
one can never describe them using the MIS decaying mode.
This has already been emphasized in Ref. [19].
Heuristically one could proceed by using Eqs. (13)

and (8) in Eq. (12) to find

(
�
1

T
D
�

2

þ 2ωI
1

T
Dþ jωj2)Πμν

¼ −ηjωj2σμν − cσ
1

T
DðησμνÞ þ…; ð17Þ

where the ellipsis denotes contributions of second and
higher order in gradients. Of all possible second order terms
only one term has been kept, with a coefficient cσ , which is
treated as an arbitrary parameter. [Solving Eq. (8) in the
gradient expansion shows that cσ contributes to second
order transport coefficients.] This term is included explic-
itly, since it improves the stability of Eq. (17).
The key property of Eq. (17) is that linearization around

an equilibrium background leads to a system of partial
differential equations which is hyperbolic for cσ ≥ 0. The
characteristic velocity in the sound channel is found to be

v ¼ 1ffiffiffi
3

p
�
1þ cσ

π

�
1=2

; ð18Þ

so for causality one must further impose cσ ≤ 2π (this in
fact ensures causality in all channels).
For a numerical treatment of Eq. (17) it is important that

exponentially growing modes be absent. Whether Eq. (17)
is stable in this sense depends on the values of parameters
such as the QNM frequencies and the viscosity to entropy
ratio. This is similar to the case of the MIS equations.
However, unlike that case, for the values of η=s and ωR;I

characteristic of N ¼ 4 SYM, Eq. (17) contains exponen-
tially unstable modes with high k. This renders these
equations (as they stand) unsuitable for numerical evalu-
ation and comparison to the results of simulations based on
the AdS/CFT correspondence. Let us emphasize, however,
that these unstable modes appear far outside the range of
applicability of the long wavelength description (e.g., with
wave vectors k > 18.5T if one chooses cσ ¼ 2π). It would
be interesting to investigate whether one could modify
Eq. (17) to cure this pathology. This question is set aside for
the moment, and we henceforth concentrate on the simplest
formulation given by Eq. (16) and Eq. (12).
Tests.—An essential part of this Letter is testing Eq. (16)

and Eqs. (12), (15) against microscopic numerical compu-
tations of N ¼ 4 SYM plasma based on the AdS/CFT
correspondence. This requires setting the parameters to
appropriate values, i.e., η=s ¼ 1=4π and ωR;I as in Eq. (4).
We also set τΠ ¼ 1=ð2πÞ, which is the smallest value
allowed by causality.
Here we consider two particularly symmetric configu-

rations: homogeneous isotropization and boost-invariant
flow. It is worth emphasizing at this point that homo-
geneous isotropization cannot be described at all by
conventional Landau-Lifschitz viscous hydrodynamics.
The AdS/CFT computations are based on numerical

solutions of (4þ 1)-dimensional Einstein equations with
the negative cosmological constant obtained following the
methods developed in Refs. [20,21] and Refs. [5,22]. This
we compare to numerical solutions of the new phenom-
enological equations initialized by specifying just the
energy, pressure anisotropy, and its time derivative which
we take to agree with the values extracted from a particular
numerical solution of Einstein equations at the specific
initialization time.

FIG. 1 (color online). Boost-invariant flow is a one-dimensional expansion of plasma in which the late time behavior is dominated by a
hydrodynamic tail. In the local rest frame, using proper time (τ)-rapidity (y) coordinates, the stress tensor takes the form hTττi ¼ ϵðτÞ,
hTyyi ¼ τ−2PLðτÞ and hT⊥⊥i ¼ PTðτÞ. The plots depict the pressure anisotropy ΔP≡ ðPT − PLÞ normalized by ϵ. Gray curves denote
the numerical solution based on AdS/CFT; magenta dash-dotted curves are solutions of MIS theory and the blue dashed curves are
solutions of the new theory defined via Eq. (16). For reference, the prediction of first order hydrodynamics is displayed as the dotted
green curve. The plots show the results of setting initial conditions at τT ¼ 0.4 (left), 0.5 (center) and 0.6 (right). One can see that both
MIS theory and the new equations converge to the exact curve at late times, which demonstrates the applicability of viscous
hydrodynamics. With earlier initialization (center), the new equations lead to a quantitative agreement with the data also in the
preequilibrium phase, as opposed to the MIS description.
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The results for holographic isotropization (see the
Supplemental Material [23]) show that for late enough
initialization, Eq. (16) captures both the qualitative and
quantitative features of the pressure anisotropy relaxation.
Comparison to a solution of linearized Einstein equations,
which can be superficially thought of as a sum over all
quasinormal modes in this system, demonstrates that the
applicability of the new equations is not limited by the far-
from-equilibrium nonlinear effects not captured by it, but
rather by the presence of the higher quasinormal modes.
The case of boost-invariant flow is presented in Fig. 1,

which shows clearly that the MIS approach captures the late
time tail very well, as do the new equations proposed here.
However, at earlier times Eq. (16) provides a much more
accurate picture. Estimates of the final temperature are also
more accurate if Eq. (16) is used. For initial conditions
involving many QNMs, the agreement at early times should
not be as good. Also, for initial conditions where no
nonhydrodynamic modes are excited at early times, effects
of second and higher order (or possibly resummed [24])
hydrodynamics may become important.
Summary and conclusions.—The new phenomenologi-

cal equations presented in this Letter generalize the
relativistic Navier-Stokes theory by including leading non-
hydrodynamic modes expected in theories of strongly
coupled plasma with gravity duals. In these theories, the
nonhydrodynamic modes correspond to QNMs of black
branes in asymptotically anti–de Sitter space. The weak
dependence of QNM frequencies on momenta suggests the
ultralocality assumption, which we have used to identify
the second order equation satisfied by the QNM contribu-
tion to the shear stress tensor. This equation is the essential
new element, which makes it possible to go beyond the
observations made in Refs. [19,25], where generalizations
of hydrodynamics were pursued having noted the signifi-
cance of the analytic structure of retarded correlators in
theories with gravity duals.
The use of a conventional hydrodynamic description

implicitly assumes that all nonequilibrium collective exci-
tations in the quark-gluon plasma are set to zero. The
proposed equations provide a means of relaxing this
assumption and exploring their influence on subsequent
hydrodynamic evolution. For some observables (such as
the final multiplicities) this may not be quantitatively
important. However, for observables sensitive to the pre-
equilibrium stages of evolution (such as photon [26,27] or
dilepton emission [28,29]) capturing the early time dynam-
ics may be valuable. An important step toward such
applications will be to develop an effective heuristic for
setting initial conditions for the nonhydrodynamic modes
in our new evolution equations. One of the possible
approaches might be to extract these initial conditions
from the early postcollision state following from the
numerical simulations of Ref. [30] or Ref. [31].
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