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Many of the technical complications associated with the general theory of relativity ultimately stem from
the nonlinearity of Einstein’s equation. It is shown here that an appropriate choice of dynamical variables
may be used to eliminate all such nonlinearities beyond a particular order: Both Landau-Lifshitz and tetrad
formulations of Einstein’s equation are obtained that involve only finite products of the unknowns and their
derivatives. Considerable additional simplifications arise in physically interesting cases where metrics
become approximately Kerr or, e.g., plane waves, suggesting that the variables described here can be used
to efficiently reformulate perturbation theory in a variety of contexts. In all cases, these variables are shown
to have simple geometrical interpretations that directly relate the local causal structure associated with the
metric of interest to the causal structure associated with a prescribed background. A new method to search
for exact solutions is outlined as well.
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Textbook discussions of general relativity typically
emphasize its geometric simplicity. Einstein’s equation
Ra

b − 1
2
δabR

c
c ¼ 8πTa

b directly relates the Ricci curvature
Ra

b of spacetime to the stress-energy tensor Ta
b of any

matter fields that may be present. Although this relation is
linear and algebraic, it can nevertheless be difficult to apply
in practice. Part of the reason for this is that far more than
Ra

b is needed to fully characterize a particular spacetime.
One might also be interested in the spacetime metric gab, its
associated gradient∇a, the Weyl curvature, etc. All of these
structures may be computed from gab, suggesting that it can
be useful to interpret Einstein’s equation not as an algebraic
constraint on the curvature, but rather as a differential
equation for the metric. The precise form of this differential
equation depends on, e.g., which variables are used to
parametrize the metric: coordinate components, a tetrad, a
3þ 1 decomposition, or something else.
This Letter considers a particular split of gab into a

“background” piece ĝab and appropriate “deviations.” In
terms of the natural variables associated with this decom-
position, all high-order nonlinearities in Einstein’s equation
are shown to vanish. Furthermore, all nonlinearity dis-
appears in physically interesting limits such as those
described by the Schwarzschild or Kerr geometries or by
plane-symmetric gravitational waves. These variables are
most directly of interest for simplifying analytic work on
perturbation theory, but can also arise in connection with
certain nonperturbative concepts.
The results described here are motivated by a theorem

originally obtained by Llosa and Soler [1], following a
conjecture due to Coll [2], which attempted to characterize
the gauge-independent “degrees of freedom” present in a
general n-dimensional metric (independently of any
dynamical equations which may be imposed). The number
of such degrees of freedom might be computed by first

counting the number of independent entries in a symmetric
n × n matrix and then subtracting n to account for gauge
degrees of freedom. The resulting 1

2
nðn − 1Þ degrees of

freedom is also the number of degrees of freedom asso-
ciated with an arbitrary 2-form fab ¼ f½ab� in n dimensions,
suggesting that metric degrees of freedom might be
representable in terms of 2-forms. Indeed, Llosa and
Soler showed that together with a conformal factor, a
general analytic metric can, at least in finite regions, be
written as a constant-curvature metric plus the square of
an appropriate fab [1]. For the n ¼ 4 case of interest here,
a particularly simple expression was shown to follow by
expanding fab in terms of its principal null directions [3].
Generalizing slightly, a flat background ĝab can be
deformed into a generic gab using only a conformal factor
Ω and a pair of 1-forms la, ka which are both null with
respect to ĝab,

gab ¼ Ω2ðĝab þ 2lðakbÞÞ: ð1Þ

This decomposition cleanly splits the metric perturbation
into parts that do and do not affect the causal structure of
gab. The factorized perturbation hab ≡ 2lðakbÞ describes
five degrees of freedom that deform the light cones of gab
relative to those of ĝab. Combining this with Ω, which does
not affect light cones, provides a total of six metric degrees
of freedom. The remainder of this Letter explores various
consequences of describing metric differences in terms of
Ω, la, and ka.
One such consequence is that hab must be proportional to

a projection operator. Letting h≡ haa while using ĝab to
raise and lower indices both here and below,

hachbc ¼
1

2
hhab: ð2Þ
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It follows that the inverse metric gab (≠ ĝacĝbdgcd) is

gab ¼ Ω−2
�
ĝab −

�
1þ 1

2
h
�

−1
hab

�
; ð3Þ

which implies that la and ka are null with respect to gab as
well as ĝab. In each tangent space, the light cones of both
metrics therefore coincide along the rays tangent to la and
ka. If these preferred vectors are not proportional, h is
nonzero and can be viewed as measuring the local defor-
mation of one light cone with respect to the other. The null
vectors of gab lie almost entirely inside those of ĝabwherever
−2 < h < 0, while the opposite is true wherever h > 0.
Another interpretation for h is that it describes how

volume measurements differ with respect to both metrics.
Defining the ratio of the volume elements associated with
gab and ĝab as the proportionality factor between ϵabcd and
ϵ̂abcd,

ffiffiffiffiffiffi−gp
ffiffiffiffiffiffi
−ĝ

p ¼ Ω4

�
1þ 1

2
h

�
: ð4Þ

As the notation suggests, this reduces to a ratio of determi-
nants in any coordinate system. If the conformal factor
is ignored, Eq. (4) coincides exactly with the expression
usually obtained in linearized perturbation theory. It is
nevertheless exact for metrics with the form of Eq. (1).
Identities (2)—(4) greatly simplify Einstein’s equation.

One way to demonstrate this explicitly is to consider the
Landau-Lifshitz formulation, which assumes a flat back-
ground and introduces the “gothic metric”

gab ≡
� ffiffiffiffiffiffi−gp

ffiffiffiffiffiffi
−ĝ

p
�
gab ¼ Ω2

��
1þ 1

2
h

�
ĝab − hab

�
: ð5Þ

Applying only the first (defining) equality here, Einstein’s
equation can be written in terms of the background
derivative ∇̂a as

∇̂c∇̂dðga½bgc�dÞ ¼ 8πðg=ĝÞðgbcTa
c þ tabLLÞ; ð6Þ

where the Landau-Lifshitz tensor tabLL satisfies

16πðg=ĝÞtabLL ≡ gcdðgef∇̂egac∇̂fgbd − 2geða∇̂fgbÞc∇̂egdfÞ

þ 1

8
ð2gcdgef − gdegcfÞ

× ð2gapgbq − gabgpqÞ∇̂pgcf∇̂qgde

þ 2∇̂cga½b∇̂dgc�d þ
1

2
gcdgab∇̂egcf∇̂fgde:

ð7Þ

Together with inertial coordinates and the harmonic gauge
condition ∇̂bgab ¼ 0 [which is not generally compatible
with Eq. (1)], these equations are most commonly used
as the starting point for the post-Minkowski and post-
Newtonian approximations to general relativity. In those
contexts, Eq. (6) is typically viewed as a differential
equation for the perturbation hab ≡ gab − ĝab [4].
Formally expanding it in powers of hab yields an infinite
series, a result which is sometimes taken to imply that
Einstein’s equation involves nonpolynomial nonlinearities.
Such arguments are misleading. The potentially trouble-

some terms are those in tabLL that involve gabgcd. While such
factors are indeed nonpolynomial in hab, they are rational.
The relevant denominators involve only powers of g=ĝ and
may be eliminated by multiplying both sides of Eq. (6) by a
sufficiently large power of this factor. Related methods for
eliminating nonpolynomial nonlinearities in Einstein’s equa-
tion have been discussed in, e.g., Refs. [5,6]. Unfortunately,
they give rise to very complicated equations and also provide
no clear simplifications at lower orders in perturbation theory.
Considerably simpler results arise in connection with

Eq. (1). With the use of this decomposition, it follows
immediately from Eqs. (3)—(5) that all nonmatter terms in
Eq. (6) are rational in hab ¼ 2lðakbÞ and lnΩ. Converting
them into polynomials requires only multiplication by
Ω−4ð1þ 1

2
hÞ. Indeed, Ω4ð1þ 1

2
hÞ3tabLL includes only terms

that involve between two and five powers of the unknowns
and their derivatives. The vacuum Einstein equation as a
whole involves terms with between one and five powers
of the unknowns. Letting Ccab ≡ ∇̂ðahbÞc − 1

2
∇̂chab and

TTR
ab ≡ ðgacδdb − 1

2
gabδdcÞTc

d, the full (not necessarily vac-
uum) Einstein equation may be explicitly written as

8π

�
1þ 1

2
h

�
2

TTR
ab ¼

�
1þ 1

2
h

��
ðΩ−2gcdÞ

�
∇̂c∇̂ðahbÞd −

1

2
∇̂c∇̂dhab − ðĝab þ habÞð∇̂c∇̂d lnΩþ 2∇̂c lnΩ∇̂d lnΩÞ

þ 2Ccab∇̂d lnΩ
�
−
�
ĝcfĝde −

1

2
ĝcdĝef

�
Ccab∇̂dhef −

1

2
∇̂a∇̂bhþ ðĝab þ habÞCcd

d∇̂c lnΩ

− 2

�
1þ 1

2
h

�
ð∇̂a∇̂b lnΩ− ∇̂a lnΩ∇̂b lnΩÞ

�
þ ðΩ−2gcdÞðΩ−2gefÞ

�
∇̂chae∇̂½dhf�b −

1

4
∇̂ahce∇̂bhdf

�

þ 1

4
∇̂ah∇̂bh: ð8Þ
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Noting that the right-hand side of this expression is equal
to ð1þ 1

2
hÞ2gacRc

b, its trace may be used to show that
the Einstein-Hilbert action ð ffiffiffiffiffiffi−gp

=
ffiffiffiffiffiffi
−ĝ

p ÞRa
a has the form

Ω2ð1þ 1
2
hÞ−2 × ð1st through 5th order termsÞ.

In general, the ability to remove nonpolynomial non-
linearities in Eq. (6) may allow the formulation of pertur-
bative schemes with simpler properties at high orders.
Perhaps more interestingly, however, the metric decom-
position adopted here can provide simplifications even at
low orders in perturbation theory. There is a sense in which
it can, e.g., “resum” perturbative series in useful ways.
Even the transformation of a known approximate metric

into the form of Eq. (1) can result, in a natural way, in a new
metric that is much more accurate than its “seed.” The
Newtonian approximation to general relativity provides
an example of this. Given a Newtonian potential ΦN ,
it is standard to consider the metric gNab ¼ ð1 − 2ΦNÞĝab−
4ΦN∇at∇bt, where ĝab is a flat background and t is
an inertial time coordinate normalized such that
ĝab∇at∇bt ¼ −1. This is not in the form of Eq. (1), so
consider instead those metrics gab ¼ gNab þ Lξĝab, which
can be obtained from gNab via first-order gauge trans-
formations. Cases where ΦN describes a static, spherically
symmetric star with finite radius are particularly straight-
forward. If such a star is not too compact, explicit gauge
vectors ξa may be found such that (i) gab is globally in the
form of Eq. (1) with la ∝ ka, (ii) outside of the star, gab is
exactly Schwarzschild, (iii) the relativistic and Newtonian
masses are exactly equal, (iv) the Newtonian radius of
the star is exactly equal to the relativistic areal radius, and
(v) the Newtonian mass density ρN is related to the
relativistic rest energy density ρ and the principal pressures
pi via ρN ¼ ð ffiffiffiffiffiffi−gp

=
ffiffiffiffiffiffi
−ĝ

p ÞðρþP
ipiÞ. The gauge vectors

that accomplish this depend only linearly on ΦN . The
metric decomposition (1), therefore, suggests a simple map
between spherical solutions in Newtonian gravity and
spherical solutions in full general relativity. Somewhat
weaker results are expected to persist even in certain
nonspherical systems.
These and other simplifications associated with Eq. (1)

are related to the special properties of limits where h → 0.
If hab does not vanish in such a limit, la and ka must
become parallel. After an appropriate rescaling, it then
follows that gab → Ω2ðĝab � 2lalbÞ. At least whenΩ ¼ 1,
metrics with this form are described as being of Kerr-Schild
type. (Cases where Ω is nontrivial while hab ¼ 0 are also
interesting as, e.g., limiting geometries on cosmological
scales.). As already noted in Ref. [3], the decomposition
of Eq. (1) may be interpreted as a generalization of the
Kerr-Schild ansatz. Unlike either the original Kerr-Schild
ansatz or its other generalizations [7–9], however, the
form discussed here is known to encompass very general
geometries. The classical Kerr-Schild metrics nevertheless
represent an important special case. All vacuum examples

are known [10], and there are even senses in which
Einstein’s equation becomes linear within this class
[7,10–15].
The Kerr-Schild metrics are also important physically.

At least in vacuum, many of the most important exact
solutions that are known are members of this class.
Spherically symmetric vacuum solutions—which must
be Schwarzschild—are Kerr-Schild, for example. Indeed,
all (not necessarily vacuum) static, spherically symmetric
metrics are at least conformal to Kerr-Schild metrics [16].
The rotating Kerr black holes are Kerr-Schild as well and
arise as the endpoints of, e.g., black hole collisions and
certain types of gravitational collapse. Even before two
black holes collide, the geometry is very nearly Kerr-Schild
in the vicinity of each black hole (an observation which
has been exploited to construct initial data for numerical
simulations [17,18]). Similar statements can also apply far
away from generic physical systems. Moving in spacelike
directions, isolated asymptotically flat spacetimes look
increasingly like Schwarzschild at large distances, indicat-
ing that h tends to zero more rapidly in such directions than
hab as a whole. Also in the Kerr-Schild class are gravita-
tional plane waves, suggesting that h may decay more
rapidly than hab even when moving away from isolated
systems along null directions.
These observations suggest that the metric decomposi-

tion considered here can be used as a new analytic tool with
which to learn about black hole binaries and similar
systems. Current understanding of such problems draws
from a combination of analytic approximations, full
numerical simulations of Einstein’s equation, and phenom-
enological modeling [19]. From the perspective of Eq. (1),
hab can always be split into a “Kerr-Schild component”
Kab ≡ 2lalb plus a correction Xab ≡ 2lðaζbÞ, where
scalings are chosen such that l½aζb� ≠ 0 unless Xab ¼ 0.
Except perhaps during the final collision between two black
holes, Xab is expected to remain small everywhere, the
majority of the strong-field behavior being accounted for
by Kab alone. Noting that the strong-field behavior is
isolated in this way is useful because of the different ways
in whichKab and Xab appear in Einstein’s equation. Even if
Kab is large and not put in “by hand” (as effectively occurs
in typical formulations of black hole perturbation theory),
good approximations to it can arise dynamically even at
low orders in a standard nonlinearity expansion. As a
simple example, such expansions can admit the exact Kerr
solution as a first-order perturbation to flat spacetime; the
strong-field structure of the metric appears all at once,
rather than bit by bit at each order. Moreover, additional
perturbations described by nonzero Xab or corrections to
Kab couple only in relatively simple ways to the lowest-
order Kab. Nonlinearities involving Xab alone can be
more complicated, although the expected smallness of
this field is likely to make such effects ignorable in many
cases.
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The sense in which Einstein’s equation treats Kab and
Xab differently may be understood more precisely by first
raising one of the indices in Eq. (8) with gac and then
undoing the trace-reversal employed there. This results in
an equation for Ω2ð1þ 1

2
hÞ3Tc

b which involves terms
containing between one and five powers of hab and
lnΩ. No term in that equation contains more than four
powers of hab. Substituting hab ¼ Kab þ Xab shows, how-
ever, that only two powers of Kab can appear. The Kerr-
Schild component of an arbitrary perturbation therefore
couples relatively little both to itself and to Xab. Further
simplifications arise if lb∇̂bla ∝ la, which is the case for
any purely Kerr-Schild solution in vacuum: All terms in
Einstein’s equation that are quadratic in Kab and indepen-
dent of Xab then vanish identically. This generalizes one of
the senses in which Einstein’s equation is known [12] to
become linear for Kerr-Schild metrics.
A detailed perturbative scheme that takes advantage of

these results is not pursued here. We instead consider the
problem that the “relaxed” Einstein equation (8) is difficult
to solve as is. Viewed as an equation for hab and lnΩ, it is
not hyperbolic. Solutions also exist that do not satisfy the
“gauge condition” hab ¼ 2lðakbÞ and, therefore, fail to be
physically relevant. A more systematic approach would
involve expanding everything explicitly in terms of la and
ka. This is most naturally accomplished not by working
directly from Eq. (8), but rather by considering a tetrad
formulation of general relativity. This replaces the metric as
the basic variable with a set of four linearly independent
vector fields (from which gab can easily be reconstructed if
desired). The specific approach adopted here is originally
due to Geroch, Held, and Penrose (GHP) [10,20,21] and is
a refinement of the better-known Newman-Penrose for-
malism [22] adapted to systems where there exist two
preferred null directions. It provides a viewpoint which is
complementary to the tensorial one discussed above.
As a brief review, the GHP formalism replaces gab by a

complex null tetrad (la; na; ma; m̄a) normalized such
that all inner products vanish except for gabmam̄b ¼
−gablanb ¼ 1 [so gab ¼ 2ðmðam̄bÞ − lðanbÞÞ]. Given any
complex λ ≠ 0, it is then interesting to consider those
rotations and boosts

la → λλ̄la; na → ðλλ̄Þ−1na; ma → λλ̄−1ma; ð9Þ
which preserve the directions of la and na but not
necessarily those of ma and m̄a. Scalars η that transform
like η → λbþsλ̄b−sη are said to have boost weight b and spin
weight s. All first derivatives of the tetrad elements that
have well-defined spin and boost weights are collected into
eight complex “spin coefficients” κ, σ, ρ, τ, κ0, σ0, ρ0, and τ0.
Primes denote a generic operation that effects the replace-
ments la ↔ na and ma ↔ m̄a in all definitions, so, e.g.,
κ ¼ −gbclamb∇alc and κ0 ¼ −gbcnam̄b∇anc. A complete
set of derivative operators ð (eth), Þ (thorn), ð0, and Þ0 is

also defined. These too have well-defined spin and
boost weights. Together, the spin coefficients and the
derivative operators completely determine the spacetime
curvature [20].
Einstein’s equation is imposed in this formalism by

restricting the Ricci curvature, which in turn implies
restrictions on the spin coefficients and the derivative
operators (see Refs. [23–26]). The result is essentially a
first-order formulation of Einstein’s equation. Components
of the stress-energy tensor are expressed as first derivatives
of the spin coefficients, and the spin coefficients are first
derivatives of the tetrad. The former set of equations is
relatively simple, involving only quadratic nonlinearities in
the spin coefficients. Obtaining a tetrad from a known set
of spin coefficients can be complicated, however. Some
of these complications are bypassed if tetrads associated
with gab are expressed as deformations of known tetrads
associated with a background metric.
The decomposition (1) provides null vector fields that

express such deformations in a particularly simple way.
In this context, it is simplest to exclude purely Kerr-Schild
or conformally Kerr-Schild metrics at the outset, so h ≠ 0.
(This has the unfortunate side effect that limits to nontrivial
Kerr-Schild spacetimes become singular. Such cases might
be better understood by instead adopting a version of the
GHP formalism which does not require that the tetrad
be normalized [21]. An approach where only one tetrad
direction is fixed [27] might also be useful.) Letting
χ ≡Ωð1þ 1

2
hÞ1=2, the directions of la and ka can then

be identified with the first two elements of a background
GHP tetrad via l̂a ¼ χla and n̂a ¼ −2ðχhÞ−1ka.
Supplementing these vectors with any appropriate m̂a,
an admissible GHP tetrad for gab can be obtained by
simple rescalings

la ¼ χ−1l̂a; na ¼ χ−1n̂a; ma ¼ Ω−1m̂a: ð10Þ

Elements of physical null tetrads that are adapted to Eq. (1)
are therefore proportional to elements of appropriate flat
tetrads. The scalings here involve only the two scalar fields
Ω and χ or equivalently lnΩ and h.
Direct computation using Eqs. (1)–(3) and the definitions

found in Ref. [20] now shows that

κ ¼ Ω−1κ̂; σ ¼ χ−1σ̂; ð11aÞ

ρ ¼ χ−1
�
ρ̂þ 1

4
hðρ̂ − ˆ̄ρÞ − Þ̂ lnΩ

�
; ð11bÞ

τ ¼ Ω−1
�
τ̂ −

1

4
hðΩ=χÞ2ðτ̂ − ˆ̄τ0Þ − ð̂ ln χ

�
: ð11cÞ

The background and perturbed spin coefficients are there-
fore related by a linear transformation depending on Ω and
χ plus simple inhomogeneous terms depending linearly on
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derivatives of these two scalars. Similar expressions
relate the background and perturbed derivative operators.
When acting on any scalar with boost weight b and spin
weight s,

Þ ¼ χ−1
�
χbÞ̂χ−b −

1

4
shðρ̂ − ˆ̄ρÞ

�
; ð12aÞ

ð ¼ Ω−1
�
Ωsð̂Ω−s þ 1

4
bhðΩ=χÞ2ðτ̂ − ˆ̄τ0Þ

�
: ð12bÞ

All of these equations have primed counterparts in which,
e.g., ðb; sÞ → ð−b;−sÞ. One consequence of Eq. (11) is
that κ, κ0, σ, σ0, ρ − ρ̄, ρ0 − ρ̄0, and τ − τ̄0 are merely
rescalings of their background counterparts. Various rela-
tions between the optical scalars associated with the
background and perturbed la and na follow immediately.
With the use of Eqs. (11) and (12), Einstein’s equation

can now be solved via the curvature and commutator
relations obtained in Ref. [20]. The unknowns in this
context are h, lnΩ, and a flat tetrad. Any two flat tetrads
can be related by a Lorentz transformation, so the unknown
tetrad here may be parametrized via a Lorentz trans-
formation that acts on a convenient fiducial tetrad.
Alternatively, a particular flat tetrad, or a class of them,
could be fixed beforehand. All differential relations
between the spin coefficients and the perturbed tetrad
are then taken into account automatically by Eqs. (10)
and (11). Only those equations that relate the spin coef-
ficients to the stress-energy tensor must be solved. Indeed,
it is straightforward to compute, e.g., Ta

b as a function of
lnΩ, h, and any free parameters in the class of chosen
tetrads. Such computations are particularly well suited to
finding exact solutions.
Suppose, for example, that gab is to solve the vacuum

Einstein equation and that la is assumed to be a repeated
principal null direction. It then follows from the
Goldberg-Sachs theorem [10,28] and Eq. (11a) that l̂a

must be null, geodesic, and shear free with respect to ĝab.
All such vector fields are known via Kerr’s theorem
[29,30], so “only” those particular tetrads in this class
must be found which, together with appropriate h and
lnΩ, imply that Ra

b ¼ 0. In general, however, neither la

nor na must be principal null vectors at all, let alone
repeated ones.

The author thanks Stanislav Babak and Yi-Zen Chu
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