
Trumpet Slices in Kerr Spacetimes

Kenneth A. Dennison,1 Thomas W. Baumgarte,1 and Pedro J. Montero2
1Department of Physics and Astronomy, Bowdoin College, Brunswick, Maine 04011, USA

2Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Strasse 1, 85748 Garching, Germany
(Received 5 September 2014; published 29 December 2014)

We introduce a new time-independent family of analytical coordinate systems for the Kerr spacetime
representing rotating black holes. We also propose a ð2þ 1Þ þ 1 formalism for the characterization of
trumpet geometries. Applying this formalism to our new family of coordinate systems we identify, for the
first time, analytical and stationary trumpet slices for general rotating black holes, even for charged black
holes in the presence of a cosmological constant. We present results for metric functions in this slicing and
analyze the geometry of the rotating trumpet surface.
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Many numerical relativity simulations adopt a 3þ 1
decomposition in which the four-dimensional spacetime is
split into a foliation of three-dimensional spatial slices. In
the context of such a 3þ 1 decomposition the coordinate
conditions are imposed with the help of a lapse function
and a shift vector. A particular successful choice of
coordinates for the evolution of black-hole spacetimes
are so-called moving-puncture coordinates (see, e.g.,
[1,2] as well as numerous later simulations; see also [3]
for a pedagogical introduction). When evolved with
moving-puncture coordinates, black-hole spacetimes settle
down to a foliation in which the spatial slices take
on a trumpet geometry. Trumpet slices end on a two-
dimensional trumpet surface that is embedded in the spatial
slices and encloses the spacetime singularity. The slices
therefore avoid spacetime singularities, and allow numeri-
cal simulations of black-hole spacetimes without special
treatment of the black holes.
The geometric properties of static trumpet slices of

(nonrotating) Schwarzschild black holes [4] are well under-
stood (see, e.g., [5–9]). On the trumpet surface the lapse
vanishes (marking the boundary of the spatial slice), the
surface has a finite and nonzero proper area (ensuring that
the surface is removed from the spacetime singularity), and it
is an infinite proper distance away from all points outside
the trumpet surface itself (so that the rest of spacetime is not
affected by the presence of the coordinate singularity). An
embedding diagram, which resembles a trumpet and gives
these slices their name, is shown, for example, in Fig. 2 of
[7]. Understanding these properties has been very helpful
in both interpreting and guiding numerical simulations.
While the gauge conditions used in many numerical rela-
tivity simulations result in trumpet slices that cannot be
given in completely analytical form, we have recently
presented a different but completely analytical family of
trumpet slices of the Schwarzschild spacetime in [10].
Generic black holes, however, rotate, and generic

numerical relativity simulations result in Kerr black holes

[11]. Evidently it would therefore be desirable to gain a
better understanding of the geometric properties of trumpet
slices of the Kerr spacetime. While this has been recog-
nized as an interesting and important problem, it appears
difficult to generalize analytical results for those trumpet
slices realized for the gauge conditions used in many
numerical simulations (see, e.g., [12] for a numerical study;
see also [13–18] for approaches to constructing trumpet
initial data for rotating black holes). In this Letter, we
instead adopt the procedure of [19] to generalize the above-
mentioned family of analytical trumpet slices [10] to
rotating black holes. We thereby introduce a new time-
independent analytical coordinate system for the Kerr
spacetime.
It is quite easy to verify that spherically symmetric slices

of the Schwarzschild spacetime can simultaneously have
all three properties of a trumpet surface proposed above
(vanishing lapse, finite proper area, and infinite proper
distance from any point off the surface). In the absence of
spherical symmetry it is not only more complicated to
evaluate these properties; a priori it is not even clear
whether all three conditions can be met simultaneously.
Below we propose a ð2þ 1Þ þ 1 formalism for the char-
acterization of trumpet slices in axisymmetric spacetimes,
andwe demonstrate that slices of constant coordinate time in
our new coordinate system for Kerr spacetimes do indeed
meet these criteria.With the exception of extremeKerr black
holes, for which surfaces of constant Boyer-Lindquist time
form trumpet slices (see, e.g., [20]), our solutions represent,
to the best of our knowledge, the first analytical examples of
stationary trumpet slices in general rotating black holes.
We start with a 3þ 1 decomposition of a stationary,

axisymmetric spacetimeM. We will assume below that the
spacetime metric gab is given in terms of spherical polar
coordinates t, R, θ, and ϕ, but independent of t and ϕ. We
then introduce a foliation Σ of M that is formed by level
surfaces of the coordinate time t; the spacetime metric gab
can then be written in the form
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gab ¼
�−α2 þ βiβ

i βi

βj γij

�
; ð1Þ

where α is the lapse function, βi the shift vector, and γab ≡
gab þ nanb the spatial metric induced by gab on the spatial
slice. Indices a; b;… run over spacetime indices, while
indices i; j;… run over spatial indices only, and

na ¼ ð−α; 0; 0; 0Þ ð2Þ
is the future-pointing normal on the slices Σ. The proper
time τ as measured by normal observers advances accord-
ing to dτ ¼ αdt. We also note that the determinant g of the
spacetime metric is given by

−g ¼ α2γ; ð3Þ
where γ ≡ detðγijÞ.
We now perform an analogous 2þ 1 decomposition of

the spatial slices. We consider axisymmetric, closed hyper-
surfaces S of the spatial slices Σ, centered on the origin, that
can be represented as level surfaces of a (potentially) new
radial coordinate R̄ ¼ R̄ðR; θÞ. In complete analogy to the
above, we can then write the spatial metric γij, in the new
barred coordinates, in the form

γ {̄ |̄ ¼
�
σ2 þ ωAω

A ωA

ωB hAB

�
; ð4Þ

where σ and ωA play the same roles as α and βi above, and
where h{̄ |̄ ≡ γ {̄ |̄ − s{̄s|̄ is the surface metric induced by γ {̄ |̄
on S. Indices A, B, … run over angular indices only, and

s{̄ ¼ ðσ; 0; 0Þ ð5Þ
is the outward-pointing normal on the surfaces S. The
proper distance between two surfaces, measured along the
normal, advances according to

dl ¼ σdR̄: ð6Þ
In analogy to (3), the determinant γ may be expressed as

γ ¼ J2γ̄ ¼ J2σ2h; ð7Þ
where γ̄ ≡ detðγ {̄ |̄Þ, h≡ detðhABÞ, and where we assume
the Jacobian of the transformation from the unbarred to the
barred spatial coordinates J ≡ detð∂x{̄=∂xjÞ to be finite and
nonzero. Combining (3) with (7) we also have

−ĝ ¼ J2α2σ2ĥ; ð8Þ
where ĝ≡ g=sin2θ and ĥ≡ h=sin2θ.
We can now characterize a trumpet surface at, say,

R̄ ¼ R̄0 as follows. We require that this surface surround
all spacetime singularities and hence have finite

(and nonzero) proper area; we will therefore assume that
ĥ be finite (and nonzero) at R̄ ¼ R̄0. We next require that
the surface have an infinite proper distance from any point
R̄ > R̄0; according to (6) this means that σ−1 must have (at
least) a single root at R̄0,

σ ∝ ðR̄ − R̄0Þ−n; ð9Þ

with n ≥ 1. As long as ĝ remains finite at R̄0, relation (8)
then shows that the lapse automatically has at least a single
root, marking the boundary of the spatial slice. In fact, these
arguments show that, as long as ĝ remains finite and
nonzero at R̄0, a trumpet surface can be identified as a
closed surface with finite ĥ on which the lapse α takes at
least a single root.
In [10] we presented an analytical family of trumpet

slices for Schwarzschild black holes, parametrized by the
areal radius of the trumpet surface 0 ≤ R0 ≤ M. The family
contains, as a special member, Painlevé-Gullstrand coor-
dinates [21,22] for R0 ¼ 0 (for which the trumpet dis-
appears). Several authors (including [19,23–25]) have
suggested procedures that generalize Painlevé-Gullstrand
coordinates for Kerr black holes. We now adopt the
procedure of [19] to generalize the entire family of trumpet
slices for rotating black holes. As discussed in [19],
we can transform from Boyer-Lindquist coordinates [26]
(tBL, RBL, θBL, ϕBL) to generalized Painlevé-Gullstrand
coordinates (t, R, θ, ϕ) by defining

dtBL ¼ dt −
ðR2 þ a2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 − ðR2 − 2MRþ a2Þ

p
ðR2 − 2MRþ a2Þf dR;

ð10Þ

and

dϕBL ¼ dϕ − a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 − ðR2 − 2MRþ a2Þ

p
ðR2 − 2MRþ a2Þf dR; ð11Þ

as well as dRBL ¼ dR and dθBL ¼ dθ, where f ≡ fðRÞ is
an arbitrary function. Choosing fðRÞ ¼ R − R0 we arrive at
the line element

ds2 ¼ −
ρ2 − 2MR

ρ2
dt2

þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
0 þ 2RðM − R0Þ − a2

p
R − R0

dtdR

−
4aMRsin2θ

ρ2
dtdϕþ ρ2

ðR − R0Þ2
dR2

− 2a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
0 þ 2RðM − R0Þ − a2

p
R − R0

sin2θdRdϕ

þ ρ2dθ2 þ sin2θ
ρ2

ξ1dϕ2: ð12Þ
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Here M is the black hole’s mass, aM its angular momen-
tum, R0 is a – so far – arbitrary constant, and we have
defined

ρ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ a2cos2θ

p
ð13Þ

as well as

ξ1 ≡ ρ2ðR2 þ a2Þ þ 2a2MRsin2θ: ð14Þ

We have verified that this solution satisfies Einstein’s
equations. In the limit of zero rotation, a ¼ 0, we recover
the expressions of [10] for the Schwarzschild spacetime;
for extreme Kerr, a ¼ M, we recover the metric in Boyer-
Lindquist coordinates, provided we choose R0 ¼ M.
It is now straightforward to verify that slices of constant

coordinate time are trumpet slices. We first compute

−ĝ ¼ ρ4 ð15Þ

which is nonzero and finite as long as ρ is, so that the
arguments following Eq. (8) apply. We then perform the
3þ 1 decomposition (1) and identify the lapse

α ¼ ρðR − R0Þ
ξ1=22

; ð16Þ

where we have abbreviated

ξ2 ¼ ðR2 þ a2Þ2 − a2ðR − R0Þ2sin2θ; ð17Þ

as well as the spatial metric γij ¼ gij [27]. For complete-
ness we also list the nonzero components of the shift

βR ¼ R2 þ a2

ρ2
α2gtR ð18aÞ

and

βϕ ¼ −a
R2 þ a2 − ðR − R0Þ2

ρ2ðR − R0Þ2
α2: ð18bÞ

Evidently, the lapse (16) has a single root in R at R ¼ R0,
making this coordinate sphere a candidate for a trumpet
surface. We therefore do not need to transform to a new
radial coordinate R̄, and instead may apply the 2þ 1
decomposition (4) directly to surfaces of constant R.
Dropping the bars in the above expressions we identify

hAB ¼
�
γθθ 0

0 γϕϕ

�
: ð19Þ

The rescaled determinant of this metric

ĥ ¼ γθθγϕϕ=sin2θ ¼ ξ1 ð20Þ

is finite and nonzero at R ¼ R0, as we required above for a
trumpet surface. Equation (8) now implies automatically
that this surface is an infinite proper distance away from all
points with radii R > R0. To verify this, we identify

σ2 ¼ γRR −
γ2Rϕ
γϕϕ

¼ ρ2

ðR − R0Þ2
ξ2
ξ1

ð21Þ

from (4), so that the integral (6) indeed diverges at R ¼ R0.
We can also insert Eqs. (15), (16), (20), and (21) into (8) to
verify that this equation is satisfied with J ¼ 1. This
completes the identification of R ¼ R0 surfaces as trumpet
surfaces in the Kerr spacetime.
For gtR to be real, the free parameter R0 should be chosen

within the limits M −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
≤ R0 ≤ M, meaning that

the trumpet surface is always between the inner and outer
horizon of the Kerr black hole. The only choice of R0 that
can be used for all values of 0 ≤ a2 ≤ M2 is R0 ¼ M,
which further simplifies some of the above expressions (see
also [10]). In the figures we show some results for this
choice. In particular, we show the proper area (top panel) as
well as both the equatorial and polar circumferences
(bottom panel) as functions of ða=MÞ2 in Fig. 1. In
Fig. 2 we show the magnitude of the shift (18), the trace
K of the extrinsic curvature Kij,

K ¼ γijKij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p

ρ2
∂R

�ðR2 þ a2Þα
R −M

�
; ð22Þ

and a conformal factor ψ which, for our purposes here, we
define as

FIG. 1 (color online). The proper area A of the trumpet surface
(top panel) as well as the proper circumferences C (bottom panel)
of the trumpet surface as a function of the squared spin parameter
ða=MÞ2, for R0 ¼ M. The equatorial circumference is measured
along the equator at θ ¼ π=2, while the polar circumference is
measured at constant ϕ.
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ψ ≡
�

γ

ðR −MÞ4sin2θ
�

1=12
¼ ρ1=6ξ1=122ffiffiffiffiffiffiffiffiffiffiffiffiffi

R −M
p ; ð23Þ

as a function of the lapse (16) for a ¼ 0.8M.
The above results can be extended to Kerr–Newman–de

Sitter black holes, i.e., rotating charged black holes [28] in
the presence of a cosmological constant Λ [29] with
Λ > −3=a2 for nonzero a. Defining

Δ≡ R2 − 2MRþ a2 −
ΛR2ðR2 þ a2Þ

3
þQ2; ð24Þ

as well as

Ξ≡ 1þ Λa2

3
and Ξθ ≡ 1þ Λa2

3
cos2θ; ð25Þ

we find that the line element is

ds2 ¼ −
Δ − a2Ξθsin2θ

Ξ2ρ2
dt2 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR − R0Þ2 − Δ

p
ΞðR − R0Þ

dtdR − 2
a½Λρ2ðR2 þ a2Þ=3þ 2MR −Q2�sin2θ

Ξ2ρ2
dtdϕ

þ ρ2

ðR − R0Þ2
dR2 − 2a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR − R0Þ2 − Δ

p
ΞðR − R0Þ

sin2θdRdϕþ ρ2

Ξθ
dθ2

þ sin2θ
Ξ2ρ2

�
ðR2 þ a2Þ

�
R2 þ a2

�
1þ Λρ2

3

��
− a2ðR2 − 2MRþ a2 þQ2Þsin2θ

�
dϕ2: ð26Þ

For Λ ¼ 0 and Q ¼ 0, the Kerr–Newman–de Sitter metric
(26) reduces to the Kerr metric (12), while for a ¼ 0 and
Q ¼ 0 it reduces to an extension of the family of [10] to
Schwarzschild–de Sitter spacetimes [30–33]. For a ¼ 0
and Λ ¼ 0, it reduces to a family of trumpet slicings of the

Reissner-Nordstrøm spacetime [34,35]. As before, slices of
constant coordinate time t are trumpet slices, with the
trumpet surface at R ¼ R0.
Most numerical simulations adopt quasi-isotropic spatial

coordinates, for which the coordinate radius r of the
trumpet surface vanishes. The above solution can be
transformed to such a coordinate system very easily with
the transformation r ¼ R − R0 (for which the spatial metric
becomes isotropic in the limit a ¼ 0). We note, however,
that K is not single valued on the trumpet surface (see also
Fig. 2). This is one indication that our new coordinate
system for Kerr is not well suited for numerical simulations
(see also the discussion in [10]). It is also not clear, a priori,
whether the criteria for trumpet surfaces (vanishing lapse,
finite proper area, and infinite proper distance from any
point off the surface) are generally compatible with the
gauge conditions typically used in numerical relativity
simulations of black holes. The point of this Letter,
however, is to introduce a ð2þ 1Þ þ 1 formalism for the
characterization of trumpet surfaces, and to demonstrate
analytically that such surfaces do indeed exist in the
spacetimes of rotating black holes. We introduce a surpris-
ingly simple new coordinate system for the Kerr spacetime,
and present the first analytical examples of stationary
trumpet slices for general rotating black holes.
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Forschungsgemeinschaft (DFG) through its Transregional
Center SFB/TR7 “Gravitational Wave Astronomy.”

FIG. 2 (color online). The conformal factor ψ (23), the trace K
of the extrinsic curvature (22), and the magnitude of the shiftffiffiffiffiffiffiffiffi

βiβ
i

p
(18) as a function of the lapse α (16) (which, unlike the

radius, is invariant under spatial coordinate transformations).
Vanishing lapse α ¼ 0 corresponds to the trumpet surface, while
α ¼ 1 is spatial infinity. All graphs are shown for a ¼ 0.8M and
R0 ¼ M. In each case the solid (red online) curve shows the
relationship in the equatorial plane, while the dotted (blue online)
curve shows the relationship in the polar direction. The inset in
the top panel shows the conformal factor near the trumpet surface
on a log-log scale. On this graph the slope of both lines is
indistinguishable from the slope of α−1=2 ∝ ðR −MÞ−1=2 ¼
r−1=2, where the proportionality follows from Eqs. (16) and
(23), and where r is a quasi-isotropic radius (see below).
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