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We investigate the distribution of errors on a computationally useful entangled state generated via the
repeated emission from an emitter undergoing strongly non-Markovian evolution. For emitter-environment
coupling of pure-dephasing form, we show that the probability that a particular patten of errors occurs has a
bound of Markovian form, and thus, accuracy threshold theorems based on Markovian models should be
just as effective. Beyond the pure-dephasing assumption, though complicated error structures can arise,
they can still be qualitatively bounded by a Markovian error model.
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The theoretical and technical challenges faced in the
construction of a quantum computer have rightly brought
into light the question of the scalability of such a device
[1–5]. There is, however, cause for optimism, since
accuracy threshold theorems imply that quantum compu-
tation should be achievable to arbitrary precision [6–12].
The existence of such thresholds relies on quantum error
correction codes [13–15], and that the noise afflicting the
computation device satisfies certain conditions on its
strength and level of spatial and temporal correlations.
In particular, the first theoretical achievements assumed
Markovian and independent noise afflicting the compo-
nents of the quantum computer [6–8], the intuition being
that, typically, the components of the device reside in
different locations and that the (local) environments
causing the errors are large enough that they have an
effectively negligible memory time [16].
While these assumptions will be valid in some quantum

systems, whether they are valid for those systems able to
perform quantum computations remains to be seen.
Recently, prompted by a debate between Kalai and
Harrow, considerable discussion has taken place in the
community about some of the core assumptions of the error
models underpinning threshold theorems for fault tolerant
quantum computing [5,12,17,18]. Broadly speaking, ques-
tions have been raised about the spatial and temporal
structure of errors incurred when one creates large entangled
states without the usual assumption of Markovian dynamics.
The purpose of this Letter is twofold. In the first instance,

we analyze a worst-case scenario, wherein a large photonic
cluster state [19,20] is created by a single emitter that is
continuously coupled to an environment in a highly non-
Markovian manner. In this scenario, it is reasonable to
believe that all the errors on this photonic state arise from
the emission process, as once the photons are travelling in
free space, they are effectively decoherence free. Second,

we analyze this procedure in the context of a specific
experimental proposal with realistic parameters, where the
emitter is a charged quantum dot interacting with a nuclear
spin bath. As our main result, we show that one can obtain a
bound on the non-Markovian error distribution probabil-
ities which has a Markovian form. Crucially, this means
that methods for combating Markovian errors will work
just as efficiently in this highly non-Markovian situation.
When the emitter is subject to pure-dephasing noise—as
can be the case for the proposal we consider—our bound is
analytically derived. Outside this regime, the structure of
errors becomes more complicated, though we show
numerically how a Markovian error model can still cor-
rectly capture all features and provide a tight bound.
In order to give a context,we phrase our arguments in terms

of the linear cluster state proposal of Ref. [21], which consists
of the repeated absorption and reemission of a string of
photons from a quantumdot (QD) residing in amagnetic field
perpendicular to the growth direction [22]. We note that there
are practical proposals (with experiments underway) to build
such devices [21,24–26], though we emphasise that our
analysis equally applies to any cluster state produced in a
similar manner. In the ideal case (no coupling to an environ-
ment), a state of n entangled photons and the QD, jCni, is
generated from an initially separable state via [see Fig. (1)]

jCni ¼
�Yn
i¼1

ðCiUyÞ
�
j0iDj0;…; 0i; ð1Þ

where j0iD ≡ j↑i (j1iD ≡ j↓i) is the state of the QD
aligned (antialigned) along the z axis, j0;…; 0i≡ ⊗n

i¼1 jRi
represents the initial state of the n photons all having right
circular polarization,Ci ¼ j0ih0jD ⊗ 1i þ j1ih1jD ⊗ Xi is a
CNOT gate on the QD and the ith photon representing
an absorption and emission process, and Uy ¼ e−iYDπ=4

rotates the QD about the y axis. Our basis is such that
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ZD ¼ j0ih0jD − j1ih1jD and Zi ¼ j0ih0ji − j1ih1ji where
j1ii ≡ jLii. Non-Markovian evolution of the QD is intro-
duced by sequentially coupling it to an environment
such that Uy → U, with U acting on the QD and its
environment.
Before we do so, we first simply consider the effect of

Pauli errors on the QD before, say, the emission of photon l;
i.e., we insert XD, YD, or ZD to the left of Cl−1 in Eq. (1).
We refer to this type of error (on the QD itself as apposed to
the resulting photon state) as a fundamental error. We find
that jCni becomes ZljCni, ZlZl−1jCni, and Zl−1jCni, for XD,
YD, and ZD, respectively [27]. Thus, we see that imper-
fections in the evolution of the QD (fundamental errors),
are mathematically equivalent to localized errors on the
resulting photon state [21].
We now investigate how these errors are distributed. We

assume that the absorption and emission processes of the
photons occur on a time scale far shorter than the rotations
of the QD, and the CNOT gates are, therefore, treated as
being instantaneous. It was shown in Ref. [21] that
relaxation of this assumption gives rise to photons with
wave packets which correspond to a fixed probability of a
fundamental Y error on the QD for each CNOT gate. To
model the non-Markovian evolution of the QD, we replace
Uy in Eq. (1) with the general operator U ¼ j0ih0jDA00þ
j0ih1jDA01 þ j1ih0jDA10 þ j1ih1jDA11, where the opera-
tors A00 etc. act on the environment jEi. Equation (1)
becomes jΨni ¼ ½Qn

i¼1ðCiUÞ�j0iDj0;…; 0ijEi, which
inspection reveals can be written

jΨni ¼
X
b

jbniDjbiF ðbÞjEi; ð2Þ

where b ¼ ðbnbn−1;…; b2b1Þ with bi ∈ f0; 1g a bit string,
F ðbÞ ¼ Abnbn−1Abn−1bn−2 ;…; Ab2b1Ab10 is a product of envi-
ronment operators, and the sum runs over all 2n possible bit
strings b. Equation (2) is the complete state of the QD, n
photons, and environment. Now, we denote by PðαÞ, where
α ¼ ðαnαn−1;…; α2α1Þ with αi ∈ f0; 1g, the probability
that the photonic state is measured having Pauli Z errors
on those photons for which αi ¼ 1, i.e., the state jΦðαÞi ¼
½Qn

i¼1 Z
αi
i �jCni. We find PðαÞ ¼ hΦðαÞjTrEðjΨnihΨnjÞj

ΦðαÞi ¼ TrE½OðαÞ†OðαÞjEihEj�, where the environment
operator OðαÞ ¼ ffiffiffi

2
p hþjDWðαÞj0iD is a matrix element of

the QD–environment operator

WðαÞ ¼
Yn
i¼1

ðZαiΔÞ ¼ ðZαnΔÞ;…; ðZα1ΔÞ; ð3Þ

with jþiD ¼ ð1= ffiffiffi
2

p Þðj0iD þ j1iDÞ, Z ¼ ZD ⊗ 1E, and
Δ ¼ ð1= ffiffiffi

2
p ÞðU − 2j0ih0jDUj1ih1jDÞ is a nonunitary oper-

ator acting in the joint QD-environment Hilbert space. For
the probability of zero errors, for example, we have the scalar
Pð0Þ ¼ TrE½Oð0Þ†Oð0ÞjEihEj�, which depends on the

environment operator Oð0Þ ¼ ffiffiffi
2

p hþjDWð0Þj0iD, which,
from Eq. (3), in turn depends on the QD-environment
operator Wð0Þ ¼ Δn. For the probability of an error
on, say, photon l, the relevant operator is
Wð0;…; 010;…; 0Þ ¼ Δn−lZΔl, and so on. Thus, calculat-
ing the probability of a given error distribution amounts to
calculating products of Z and the non-Hermitian matrix Δ.
Equation (3) provides us with a systematic way to determine
error distribution probabilities in the non-Markovian case,
making no assumptions about the state of the environment,
its memory time scale, or its interaction strength with, or
potential correlations with, the QD at any point in the
evolution. Though we have phrased our analysis in terms of
quantum dots and photons, Eq. (3) is valid for any cluster
state generated as shown in Fig. (1).
For emitter-environment coupling of pure-dephasing

form, Eq. (3) can be further simplified. We motivate this
by noting that, for electrons in QDs, the dominant source of
dephasing is due to coupling to nuclear spins via hyperfine
interactions [28–31]. Since we consider a field in the y
direction, the Hamiltonian takes the form H ¼ ðΩ=2ÞYDþ
ð1=2ÞPk ωkI

y
k þ ð1=4ÞPk AkS · Ik þHdip, where S ¼

ðXD; YD; ZDÞ, while Ik ¼ ðIxk; Iyk; IzkÞ acts on environment
spin k, and Hdip ¼

P
k≠k0bkk0 ðIþk I−k0 − ð1=2ÞIykIyk0 Þ with

I�k ¼ ð1=2ÞðIxk � iIzkÞ. Typically, the Zeeman energy of
the QD spin is far larger than those of the nuclei, leading
to a suppression of relaxation processes. The quantity
regulating this distinction is δ ¼ A=ðΩ ffiffiffiffi

N
p Þ, where A ¼P

kAk and N is the number of nuclei appreciably interact-
ing with the QD spin. For δ ≪ 1, it was shown that the full
Hamiltonian above can be approximated by the pure-
dephasing (PD) Hamiltonian [28,29] HPD ¼ ðΩeff=2ÞYD þ
j þ iihþijHþ þ j − iih−ijH− where YDj � ii ¼ �j � ii
and H� ¼ ∓ð1=2ÞhBNi þ ð1=2ÞPkðω0

k � 1
2
AkÞIyk � ð1=

4ÞPk≠k0 ðAkAk0=ΩÞIþk I−k0 þHdip, with ω0
k ¼ ωk − A2

k=
ð4ΩÞ. The effective magnetic field is Ωeff ¼ Ωþ hBNi þ
ð1=4ÞPkA

2
k=Ω where hBNi ¼ TrðBNρEÞ with BN ¼

ð1=2ÞPkAkI
y
k the Overhauser field operator. For typical

GaAs QDs, the total coupling strength A ∼ 1 T, while the
typical values of N range from 104 to 106 [28–30]. Thus,

FIG. 1 (color online). Quantum circuit for the generation of
a linear cluster state of five photons and a quantum dot.
Non-Markovian decoherence of the dot is modelled as a
sequential coupling to an environment. In the ideal case, the
unitaries are replaced by e−iYDπ=4 ⊗ 1E.
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field strengths of Ω ∼ 100 mT and above should be well
described by the pure-dephasing Hamiltonian.
Using U ¼ exp½−iπ=ð2ΩeffÞHPD�, from Eq. (3) we find

for a general error distribution α we have

OðαÞ ¼
Yn
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−1ÞfiðαÞ

q
2

½U− þ ð−1ÞfiðαÞUþ�; ð4Þ

with fiðαÞ ¼
P

n
j¼i αj and U� ¼ exp½−iðπ=2ΩeffÞH��.

We see that OðαÞ consists of a product of n operators,
each of which being either M� ¼ ð ffiffiffiffiffiffiffi�1

p
=2ÞðU− � UþÞ

depending on the error distribution α. Using Eq. (4), and
the submultiplicative property of the operator norm defined
as jjAjj≡maxjϕihϕjAjϕi=hϕjϕi, we find the non-
Markovian error probabilities satisfy

PðαÞ ≤ jjM†
−M−jjhðαÞjjM†

þMþjjn−hðαÞ; ð5Þ

where hðαÞ ¼ 1
2
½n −

P
n
i¼1ð−1ÞfiðαÞ� is the number of

occurrences of M− in Eq. (4). We see that jjM†
−M−jj plays

the role of an error probability, with unitarity of U�
ensuring that jjM†

�M�jj ≤ 1. Note that hðαÞ does not
count the number of errors on the photonic state: it counts
the number of adjacent pairs necessary to create it, or
equivalently, the number of fundamental QD errors. The
form of HPD means that the environment can only induce
fundamental Y errors on the QD, which make adjacent pairs
of errors on the resulting photonic cluster state. A single
isolated error, say α ¼ ð010Þ, has hð010Þ ¼ 2, since pairs
of adjacent errors at positions 1 and 2 are required to
realize it.
Equation (5) shows that even in the non-Markovian case,

we can put a rigorous bound on the probability of a given
error distribution, which behaves as a power law in the
number of fundamental errors in the distribution. More
importantly, we see that the non-Markovian nature of the
environment cannot introduce long range spatial correla-
tions in the errors; the probability of h fundamental errors is
bounded by ph

− with p− ¼ jjM†
−M−jj ≤ 1. These results are

valid for any cluster state generated in the way shown in
Fig. (1) when the emitter-environment coupling takes on a
pure-dephasing form.
For the QD example we consider, we can go further by

noticing that the total spin projection in the y direction is
conserved, ½H�;

P
k I

y
k� ¼ 0. The operators U� ¼

exp½−iðπ=2ΩeffÞH�� from which the probabilities are
calculated are, therefore, block diagonal, and the result
is that the probabilities become a sum over contributions
from spaces with fixed spin projections. By defining
projection operators Pm which satisfy

P
mPm ¼ 1E and

project onto the eigenspace with an eigenvalue of
P

kI
y
k

equal to m, the probabilities can be written PðαÞ ¼P
mPmðαÞ where PmðαÞ ¼ TrE½O†

mðαÞOmðαÞρm�, and ρm

is the environment state in the m subspace, while
OðαÞ ¼ PmOðαÞPm. In this way, we can make use of
properties we know of the environment state. For example,
for an initial environment state having weight in a single m
sector only, we can write PðαÞ ¼ PmðαÞ and bound by

PmðαÞ ≤ jjMðmÞ†
− MðmÞ

− jjhðαÞjjMðmÞ†
þ MðmÞ

þ jjn−hðαÞ; ð6Þ

where MðmÞ
� ¼ PmM�Pm. This bound is tighter than that

given in Eq. (5) since the operators involved necessarily act
nontrivially in a smaller space.
In Fig. (2), we plot the exact non-Markovian error

probabilities (blue circles) and the bound calculated using
Eq. (6) (red crosses), using the pure-dephasing Hamiltonian.
The left panels show all 25 error probabilities for a five-
photon state, ordered by increasing fundamental errors,
hðαÞ, for an environment of N ¼ 10 spins initially in an
equal mixture in the m ¼ 0 subspace [32]. The probabilities
fall into distinct bands determined by their value of hðαÞ,
and the bounds correctly capture the behavior of the exact
values. For small A=Ω, our bound is relatively tight, while
for A=Ω ¼ 2, where our derived bound gives fairly high
values, the exact probabilities are still well behaved and
remain low. In fact, they can be bounded using a simple
best-fit procedure by a Markovian model of the form
phð1 − pÞn−h, with p significantly less than p−, as shown
in green on the lower left plot. It is clear from Fig. 2 that the
non-Markovian errors do not show harmful long-range
correlations, as the bound suggests. Thus, strategies to
combat errors assuming Markovian evolution will, in this
regime, remain effective in the non-Markovian case.
Note that we have chosen here an initial environment

state for which the average Overhauser field is
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FIG. 2 (color online). Left panels: all 25 non-Markovian error
distribution probabilities for a five-photon state, calculated exactly
(blue circles), using the bound given in Eq. (6) (red crosses), and a
best fit to a Markovian model of the form phð1 − pÞn−h (green
circles). The error distributions are ordered along the x axis such
that those corresponding to the least number of fundamental errors
are to the left. The inset in the lower plot shows a zoom in of the
hðαÞ ¼ 2 band. Right panels: scaling of a typical error distribution
probability with increasing environment size.
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zero hBNi ¼ 0, and for which fluctuations are small,
ΔBN ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðBNÞ2i − hBNi2

p
≪ Ω. As a result, dephasing

due to ensemble average over the Zeeman field is elimi-
nated, and the error probabilities remain low and approx-
imately equal. Importantly, as long as the initial state obeys
ΔBN ≪ Ω, the features seen in Fig. (2) are remarkably
robust; since we include hBNi in Ωeff , they are also present
in cases for which hBNi ≠ 0, including initially pure
environment states.
In the right panels of Fig. (2), we show the scaling with

increasing environment size of the exact probability and
the bound in Eq. (6), for a typical error distribution α ¼
ð01100Þ for which hðαÞ ¼ 1. With pure-dephasing, the
exact probabilities ought to scale as ∼1 − ð1þ jajN−2Þ−1=2
where a is fixed for fixedA andΩ [28,29], and we find that
the bound obeys a similar scaling ∼c − ð1 − jajN−2Þ−1=2.
The dashed lines show fits of this form, showing that the
probabilities and bound scale as expected with N. Thus, the
bound we derive tends to a constant value with increasing
environment size, and for small A=Ω, can directly replace
the error rate in threshold theorems assuming Markovian
error models. In fact, even when A=Ω takes on higher
values, our numerics strongly suggest that one can tightly
bound the error distribution with a Markovian model.
For typical QDs, the pure-dephasing form is valid for

magnetic field strengths of ∼100 mT and above. However,
for optimal performance of the specific cluster state
proposal we consider [21], smaller magnetic fields would
be preferred (though not essential). To investigate this
regime, in the top panel of Fig. (3), we show the non-
Markovian probabilities calculated using the full hyperfine
Hamiltonian, for an eight-photon state with A=Ω ¼ 4 and

N ¼ 6 such that δ ≈ 1.6 (so that Ω ∼ 1 mT for realistic QD
sizes). We see that the band structure becomes convolved
with probabilities that lie above their bands. These dis-
tributions all have the form α1 ¼ ð…010…Þ: the
Hamiltonian we now use can induce fundamental X and
Z errors on the QD, which correspond to single errors on
the photon state. This can be further understood in the
middle panel, where we show the corresponding polariza-
tion of the environment hPkI

y
ki for each distribution; when

a distribution of the form α1 is realized, angular momentum
is exchanged with the environment.
Though these exact non-Markovian probabilities appear

to have a more complicated structure, they can still be
qualitatively described by a Markovian model. With any
error distribution α, we can associate a finite number of QD
trajectories which will result in it. An error distribution α1,
for example, can be made from a combination of funda-
mental Y errors, or a single X or Z error. We can, therefore,
define a simple Markovian model, wherein we assign fixed
probabilities for fundamental X, Y, and Z errors, from these
calculate the probability of a given trajectory, and sum over
all trajectories corresponding to a given error distribution.
Probabilities calculated in this way are shown in green in
the lower panel of Fig. (3). Importantly, we see that these
Markovian error probabilities qualitatively capture all the
exact non-Markovian probabilities.
We have investigated the distribution of errors on a large

entangled state generated by the repeated emission from a
single emitter with non-Markovian evolution. For pure-
dephasing dynamics, we found that the error probabilities
have a bound of Markovian form, such that error correction
schemes remain just as effective in this non-Markovian
regime. We have also shown that the errors can be bounded
by a Markovian model even beyond pure-dephasing dynam-
ics, suggesting the broad applicability of our findings.
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