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We consider the problem of reconstructing global quantum states from local data. Because the
reconstruction problem has many solutions in general, we consider the reconstructed state of maximum
global entropy consistent with the local data. We show that unique ground states of local Hamiltonians are
exactly reconstructed as the maximal entropy state. More generally, we show that if the state in question is a
ground state of a local Hamiltonian with a degenerate space of locally indistinguishable ground states, then
the maximal entropy state is close to the ground state projector. We also show that local reconstruction is
possible for thermal states of local Hamiltonians. Finally, we discuss a procedure to certify that the
reconstructed state is close to the true global state. We call the entropy of our reconstructed maximum
entropy state the “reconstruction entropy,” and we discuss its relation to emergent geometry in the context
of holographic duality.
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In this Letter we discuss the reconstruction of a global
quantum state from local data. As an example, consider
a quantum system defined on a one dimensional ring of
length L and suppose we are given complete access to all
subsystem density matrices of intervals of size R. In other
words, we know there is a global state, but the only
information we have about the global state is in the form
of local data: the states of all intervals of size R. We would
like to know under what conditions the global state can
be reconstructed from the local data. Our reconstruction
candidate is the global state of maximal global entropy
consistent with the local data. The entropy of the entropy
maximizing state is called the reconstruction entropy Srec.
Remarkably, when the original global state in question
is the unique ground state of a local Hamiltonian with
bounded range interactions, perfect reconstruction is pos-
sible using our procedure. When the Hamiltonian supports
a degenerate ground state manifold of locally indistinguish-
able states, our procedure reconstructs the projector onto
the ground state manifold.
It should be emphasized that the observation that local

data determine the ground state for unique ground states
of local Hamiltonians is not new [1,2] (although our
reconstruction procedure is different). And, of course, it
is well known that thermal states are maximal entropy
states consistent with local energy constraints. Our con-
tributions are refinements of these results, e.g., our dem-
onstration that Srec provides a certificate guaranteeing
closeness of the reconstruction, and the application of
the results to open questions in topological order and
holographic duality.

We have several motivations for considering this prob-
lem. It is known that local data are sufficient to determine
many physical quantities of interest in local quantummany-
body systems. In particular, assuming a bounded range
Hamiltonian, the energy of the system may be obtained
from local data. However, this observation does not lead to
an efficient way to find many-body ground states because
the problem of determining the existence of a global state
consistent with the local data is known to be computation-
ally hard [3]. A seemingly different setting in which we
would like to understand the relationship between global
and local data occurs in gravitational systems. Holographic
duality [4–8], which relates ordinary quantum many-body
systems to gravitational systems, shows that these two
settings are closely related.
A fundamental question in semiclassical quantum grav-

ity is how to obtain the semiclassical geometrical data
from the microscopic degrees of freedom. With general
gravitational boundary conditions, this question is still
quite mysterious, but using the conjectured holographic
duality between gravitational systems in asymptotically
AdS spaces and quantum field theories (QFT) associated to
the boundaries of those spaces [6], there is a sharp micro-
scopic theory (the QFT) in which to answer such questions
for AdS asymptotics.
A clue concerning the diagnosis of the bulk geometry is

provided by the observation that surfaces in gravitational
theories are often associated with entropies (see, e.g., [9]
for a recent argument). For example, the area in Planck
units of the event horizon of a black hole is the entropy
of the black hole, although what exactly this entropy

PRL 113, 260501 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

31 DECEMBER 2014

0031-9007=14=113(26)=260501(5) 260501-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.113.260501
http://dx.doi.org/10.1103/PhysRevLett.113.260501
http://dx.doi.org/10.1103/PhysRevLett.113.260501
http://dx.doi.org/10.1103/PhysRevLett.113.260501


represents is unspecified [10]. It is known that the entropy
behaves like thermodynamic entropy, hence a black hole is
hot and radiates [11].
Holographic entanglement entropy provides one sharp

way to recover geometrical data from entropic quantities
[12]. Within Einstein gravity, the entanglement entropy of a
field theory region A is given by the bulk area in Planck
units of the bulk minimal surface ~A, which is anchored at
∂A at the asymptotic boundary of AdS. Here we consider a
different kind of entropy, the reconstruction entropy Srec,
that we use to probe holographic geometry. For highly
excited energy eigenstates of a thermalizing holographic
Hamiltonian, we show that the reconstruction entropy is
associated with the geometry of the corresponding black
hole horizon, but for ground states where Srec ¼ 0 there
is no geometrical interpretation. Reference [13] partially
motivated our work by showing that the lengths of some
bulk curves in AdS3 were related to particular linear
combinations of entanglement entropies; [13] further con-
jectured that the lengths of these special bulk curves were
related to some uncertainty in reconstructing the global
state from local data. Our ground state results show that this
interpretation of the bulk geometry is not possible if we
demand high accuracy reconstruction.
Another important motivation for this work comes

from the physics of topological quantum matter (see, e.g.,
[14–17]). A crucial question is how to extract the topological
properties of the system from feasible measurements. In
principle, such topological properties can be obtained, for
example, from precisely controlled interferometry experi-
ments involving topological excitations. However, such
experiments are difficult at present and seem to require
considerable prior knowledge of the physics.We give a very
different answer to the question of extracting topological
propertiesbyshowingthat localdatasuffice toreconstruct the
full quantum state provided we consider a ground state or
thermal state of a local Hamiltonian. If the system also
possesses translation invariance, then a finite amount of local
data suffices to determine the full state and all topological
properties. Unfortunately, while there exists amapping from
local data to topological properties,we cannot at present give
an efficient way to compute this mapping.
Our results are also reminiscent of the Hohenberg-Kohn

theorem [18] which forms the basis of density functional
theory. One important difference is that we assume a local
Hamiltonian throughout, although modifying our argu-
ments to include the Coulomb interaction is straightfor-
ward. Note also that our reconstruction results apply to the
ground state of any local Hamiltonian and don’t require
knowledge of the Hamiltonian.
The remainder of the Letter is organized as follows. First

we define our reconstruction procedure. Then we show that
local data permits reconstruction of the ground state
projector provided the original global state was the ground
state of a local Hamiltonian. This was observed in [1] for

unique ground states; we show it also for topological states.
We further demonstrate that thermal states of local
Hamiltonians may also be reconstructed using the maxi-
mum entropy method (a subject with a long history; see
e.g., [19] and more recently [2,20–22]) and argue that
highly excited energy eigenstates reconstruct to thermal
states. Finally, we discuss reconstruction in the presence
of error and show how to certify in certain cases that
our reconstruction procedure gives approximately the
correct state.
Reconstruction entropy.—We begin by defining the

problem and the reconstruction entropy Srec. Consider a
local many-body system in some (unknown) global state
ρglobal. We are given complete access to the reduced density
matrices fρAi

g for some set of regions fAig satisfying
∪iAi ¼ whole system. We assume that this set of density
matrices is consistent with at least one global state. Let C
be the set of global states consistent with the local data.
This set C is convex because if ρ and ρ0 are both consistent,
then so is pρþ ð1 − pÞρ0 for p ∈ ½0; 1�. We seek the state
σ ∈ C that maximizes the von Neumann entropy SðσÞ ¼
−tr½σ logðσÞ�. The maximizer is called σ⋆ and the maximum
entropy is Sðσ⋆Þ ¼ Srec.
A general solution to this problem is obtained as follows.

Let fOig be a complete set of Hermitian operators for the
regions fAjg so that their expectation values completely
determine the states fρAj

g. For example, if we were
considering a single spin, the set fI; X; Y; Zgwould suffice.
More generally, the set of all products of Pauli operators is
sufficient for a set of spins. Define

fðσ; fλigÞ ¼ SðσÞ þ
X

i

λi½trðρglobalOiÞ − trðσOiÞ�; ð1Þ

where ρglobal is the unknown global state. Since the Oi are
restricted to the regions Aj, this quantity depends only on
local data known to us. Then we consider the variational
problem

max
σ;fλig

fðσ; fλigÞ ¼ fðσ⋆; fλ⋆i gÞ: ð2Þ

The λi equations of motion impose the consistency with
local data, while the variation with respect to σ tells us that
σ⋆ has the form

σ⋆ ¼ Z−1 exp

�
−
X

i

λ⋆i Oi

�
: ð3Þ

This is a generalized Boltzmann ensemble familiar from
statistical mechanics.
Now we have shown how to construct the entropy

maximizing state using only known local data, but it should
be emphasized that actually determining the λi parameters
may be a hard computational problem. We must construct
the expectation value of everyOi as a function of the λi and
invert the system of equations

hOiiσðλÞ ¼ hOiiρ: ð4Þ
Convexity guarantees that a solution always exists.
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Reconstruction of local ground states.—We now show
that the ground state of a local Hamiltonian can be
reconstructed from local data provided the size of the local
regions are larger than the range of the local Hamiltonian.
The result is easiest for states which are unique ground
states of local Hamiltonians; later we generalize the argu-
ment to include degenerate locally indistinguishable
ground states. The results are illustrated with an explicit
free fermion example in the Supplemental Material [23].
Suppose the unknown global state ρ is the unique ground

state of some local Hamiltonian H with range R0. H is a
sum of geometrically local terms,

H ¼
X

x

Hx; ð5Þ

such that each Hx acts only on degrees of freedom within
R0 of x. Wewill need not to know anything aboutH in what
follows except that it exists and has range R0.
Now let σ⋆ be the global state of maximal entropy

consistent with local data on regions of size R. Following
the discussion of the reconstruction entropy above, we
can construct this state as an exponential of sums of
local operators defined on the same regions of size R.
Determining σ is then a matter of choosing the λ parameters
such that the global state is consistent with local data.
One locally consistent solution is

σ⋆ ¼ lim
β→∞

e−βH; ð6Þ

in which case the reconstruction entropy is zero. As we now
show, this is the unique answer.
Let the energy of the ground state ρ be E0 and consider

the positive operator H − E0 ≥ 0. We must have

tr½σ⋆ðH − E0Þ� ≥ 0 ð7Þ
by positivity. However, using the locality of H we have

trðHxσ
⋆Þ ¼ trðHxρÞ ð8Þ

provided R ≥ R0, since ρ and σ⋆ agree on subsystems of
size R and smaller. Hence, we may write

tr½σ⋆ðH − E0Þ� ¼ tr½ρðH − E0Þ� ¼ 0; ð9Þ
where the last equality follows because ρ is the ground
state. We finally conclude that

tr½σ⋆ðH − E0Þ� ¼ 0; ð10Þ

and since (H − E0) is positive σ⋆ must lie in its null space.
But by assumption ρ was the unique ground state of H,
hence σ⋆ ¼ ρ as claimed.
The above discussion can be applied to topological states

as well. A new feature is the possibility of degenerate
ground states which are locally indistinguishable. For

example, consider a Z2 gauge theory (e.g., a spin liquid
[25]) in the extreme deconfined limit. On a torus, there are
four states which are locally identical but differ in their
values for certain nonlocal string operators. The maximum
entropy state consistent with local data is then the equal
weight mixture of the four ground states. More generally,
this result holds for any model with ground states which are
exactly locally indistinguishable. Since the statistics and
braiding of excitations can be extracted from a complete
set of ground states on a torus [26], we conclude that the
same information can be extracted from the local density
matrices as well. As we discuss in the Supplemental
Material [23], the above argument remains valid even if
the states are only approximately locally identical.
Reconstruction of thermal states.—We now extend the

results of the previous section to encompass thermal states
of local Hamiltonians. We show that any thermal state of a
local Hamiltonian can be reconstructed from local data
using the maximum entropy state discussed above. Note
that this idea is very old, e.g., Ref. [19] used it extensively,
but extra care is required when dealing with topological
systems or allowing errors. The ground state results of
the previous section are obtained as a limit of the results in
this section.
Consider again a local Hamiltonian H and suppose the

system is in a thermal state at temperature T,

ρ ¼ 1

Z
e−H=T: ð11Þ

The thermal state is characterized as maximizing SðρÞ
subject to the constraint that hHiρ ¼ E, where E is some
fixed energy. The temperature is a Lagrange multiplier;
e.g., we extremize SðρÞ − βðhHi − EÞ with respect to both
ρ and β and find β ¼ 1=T. Hence the thermal state is the
maximum entropy state consistent with just one constraint
on the total energy.
Let σ⋆ be the maximum entropy state consistent with ρ

on regions of size R. If R > R0, the range of H, then by
the assumption of local consistency σ⋆ correctly computes
the expectation value of all the local terms in H and
hence correctly computes the expectation value of H itself.
Thus, σ⋆ is among the states consistent with the total
energy constraint, hence SðρÞ ≥ Sðσ⋆Þ since ρ is the
entropy maximizing state consistent with the total energy
constraint.
To complete the argument, we introduce the relative

entropy SðρjσÞ (see [27] for a review) defined as

SðρjσÞ ¼ tr½ρ logðρÞ − ρ logðσÞ�: ð12Þ
The relative entropy is not symmetric in its argument, but
it does provide a kind of quasidistance between states.
Furthermore, the relative entropy obeys SðρjσÞ ≥ 0 and is
only zero if ρ ¼ σ. It can also be infinite if the support of σ
is smaller than the support of ρ.

PRL 113, 260501 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

31 DECEMBER 2014

260501-3



From the definition we have

Sðρjσ⋆Þ ¼ tr½ρ logðρÞ − ρ logðσ⋆Þ�
¼ −SðρÞ − tr½ρ logðσ⋆Þ�: ð13Þ

By construction logðσ⋆Þ is a sum of local operators with
each local operator supported on a region where σ⋆ is
consistent with ρ. Hence, we may write

tr½ρ logðσ⋆Þ� ¼ tr½σ⋆ logðσ⋆Þ� ¼ −Sðσ⋆Þ: ð14Þ

The relative entropy is then

Sðρjσ⋆Þ ¼ Sðσ⋆Þ − SðρÞ; ð15Þ

so we conclude from positivity that Sðσ⋆Þ ≥ SðρÞ.
Combining the two inequalities SðρÞ ≥ Sðσ⋆Þ and

Sðσ⋆Þ ≥ SðρÞ we must have Sðσ⋆Þ ¼ SðρÞ. Then the
relative entropy is zero, so ρ ¼ σ⋆ as claimed. Note that
we do not have to know H, only that H exists, to prove
that ρ ¼ σ⋆.
Reconstruction with error.—We now modify our results

to allow reconstructed states that only reproduce local data
up to some error. It is important for our purposes that we
don’t modify the local data itself since this could lead
to inconsistent local data. One motivation for introducing
error is that perfect local consistency is never really
achieved since there are always experimental uncertainties.
Reassuringly, we show that the constructions above tolerate
small errors in the local consistency conditions. For
example, demanding local consistency up to an error of
order inverse polynomial in the system size still gives a
reconstructed state which is close to the target state.
Suppose ρ is the unique ground state of a local range R0

Hamiltonian H consisting of LD terms in D dimensions.
Let σ⋆;ϵ be the maximum entropy state of the form Eq. (3)
with the property that

∥ρR − σ⋆;ϵR ∥1 ≤ ϵ: ð16Þ

We again compute the quantity tr½σ⋆;ϵðH − E0Þ� ≥ 0 and
find

tr½σ⋆;ϵðH − E0Þ� ≤ ϵLDmax
x

ð∥Hx∥Þ: ð17Þ

If Δ is the gap of H then we also have

tr½σ⋆;ϵΔð1 − ρÞ� ≤ tr½σ⋆;ϵðH − E0Þ�; ð18Þ

where (1 − ρ) projects onto the orthogonal complement of
the ground state. If Δ ∼ ð1=polyðLÞÞ then ϵ ∼ ð1=polyðLÞÞ
is sufficient to obtain high overlap with the true ground
state ρ.
The thermal argument is also quite similar to the case

of perfect reconstruction. However, there is one important

subtlety: the need to control the difference between
tr½ρ logðσ⋆Þ� and tr½σ⋆ logðσ⋆Þ� places a restriction on the
lowest temperatures we can consider for a given error ϵ.
For any temperature independent of system size [or slowly
decreasing, e.g., T ∼ 1= logðLÞ], 1=polyðLÞ error is suffi-
cient to reconstruct the thermal state to high accuracy.
To make contact with the geometry of black holes we

turn to the case of highly excited energy eigenstates of a
thermalizing Hamiltonian H. Assuming a strong form of
eigenstate thermalization [28,29], it follows that for a given
energy eigenstate jEi and a small region A we have

trĀðjEihEjÞ ≈ trĀðe−H=TðEÞ=ZÞ: ð19Þ

In the language of the trace norm ∥…∥1, we have (with
high probability or for almost all states)

∥trĀðjEihEjÞ − trĀðe−H=TðEÞ=ZÞ∥1 ≤ ϵ: ð20Þ

In this equation ϵ can be exponentially small in the total
system size [30].
Thus allowing a very small amount of error in the local

data extracted from a highly excited state immediately
precludes the possibility of perfect reconstruction.
Furthermore, we have shown that thermal states are stable
points in that they can be perfectly reconstructed, so the
maximal entropy state obtained from a highly excited
state will be very close in trace norm to the corresponding
thermal state at temperature TðEÞ determined by E.
Suppose the system in question is also a holographic
QFT so that the thermal state is dual to a black hole
(BH) geometry. Then the reconstruction entropy obeys
Srec ¼ Sthermal ¼ ðABH=4GNÞ where GN is Newton’s con-
stant. Our result is the first equality, while the second
equality is a standard fact about black holes, but together
they provide a different approach to extract geometrical
data from thermalized pure states. This connection between
reconstruction and black hole entropy may prove useful
since the relation between the black hole geometry and
particular black hole microstates is not understood. Finally,
the reconstruction entropy is defined for all times and is
expected to asymptote to the thermal entropy at long times,
so it would be interesting to establish a result analogous
to the second law of thermodynamics stating that the
reconstruction entropy increases with time for some rea-
sonable class of initial states.
Certifying the reconstruction.—So far we have outlined a

general reconstruction procedure that is applicable to any
quantum state. We discussed several examples and showed
that the procedure works well in a variety of physically
relevant scenarios. Now we ask whether one can certify that
the reconstructed state is close to the original state without
knowing the original state or the Hamiltonian. We show
that this is possible provided that the reconstruction entropy
is close to zero.
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To make things concrete, suppose we are given a
quantum state ρ. Recall that we defined σ⋆;ϵ as the
maximum entropy state that is approximately consistent
with ρ over local subsystems with a precision ϵ. The
entropy of σ⋆;ϵ is Sϵrec ¼ −tr½σ⋆;ϵ logðσ⋆;ϵÞ�.
We prove a universal upper bound on the distance

between ρ and σ⋆;ϵ:

1

8
∥ρ − σ⋆;ϵ∥21 ≤ Sϵrec − SðρÞ; ð21Þ

which follows from a general inequality between two
quantum states, 1

8
∥ρ−σ∥21≤Sðρþσ=2Þ−½(SðρÞþSðσÞ)=2�

[31]. Since σ⋆;ϵ is the maximum entropy state,
Sððρþ σ⋆;ϵÞ=2Þ ≤ Sϵrec and SðρÞ ≤ Sϵrec. Plugging in these
two inequalities, Eq. (21) is derived. This inequality
assigns an operational meaning to the reconstruction
entropy, since its smallness certifies the faithfulness of
the reconstruction procedure.
Outlook.—One context where reconstruction is easy to

carry out occurs when the target state is a quantum Markov
chain. Quantum Markov chains are states that saturate
strong subadditivity of entropy and hence have a very
special conditional structure. Such states have been char-
acterized in [32], and Petz has shown that there is a
quantum channel which permits one to reconstruct a
Markov chain piece by piece [33]. Some gapped ground
states of local Hamiltonians are Markov chains or nearly
Markov chains, so we suspect that this technology will be
useful for further work in the reconstruction problem.
Related ideas have already been pursued in [34].
One idea for making further contact with holographic

geometry considers the reconstruction problem for sub-
systems. Suppose we reconstruct not the global ground
state of a holographic QFT but only the state of a subregion
in the ground state. Then the reconstruction entropy will be
related to the entanglement entropy which has a geomet-
rical interpretation. For example, in the ground state of a
CFT [35] has shown that the density matrix of a ball in any
dimension is the exponential of a local operator. The result
for thermal states of local Hamiltonians then implies that
exact reconstruction is possible for this region type. Hence
the reconstruction entropy is the entanglement entropy
which is geometrical.
Finally, turning to our topological phases motivation, we

have shown that the ground state projector in a topological
phase can be reconstructed from local data. In principle,
this gives a map from local data to topological data. A
better understanding of the properties of this map, e.g., if it
is efficiently computable, is an interesting target for
future work.
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