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We study the ground state phase diagram of a one-dimensional hard-core bosonic model with nearest-
neighbor interactions (XXZ model) where every site is coupled Ohmically to an independent but identical
reservoir, hereby generalizing spin-boson models to interacting spin-boson systems. We show that a bath-
induced Bose liquid phase can occur in the ground state phase diagram away from half filling. This phase is
compressible, gapless, and conducting but not superfluid. At half filling, only a Luttinger liquid and a
charge density wave are found. The phase transition between them is of Kosterlitz-Thouless type where the
Luttinger parameter takes a nonuniversal value. The applied quantum Monte Carlo method can be used for
all open bosonic and unfrustrated spin systems, regardless of their dimension, filling factor, and spectrum
of the dissipation as long as the quantum system couples to the bath via the density operators.
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Introduction.—Quantum systems are, in general, coupled
with their surroundings. In standard textbook scenarios it
is assumed, explicitly or implicitly, that the system-
environment coupling is weak such that the equilibrium
state of the system can be described by the Boltzmann-Gibbs
ensemble. However, this property no longer holds for
quantum systems with finite coupling strength to the
environment (i.e., when this coupling is comparable with
the typical energy scales in the system), where the system-
environment coupling can qualitatively change the properties
of the system [1]. The paradigmatic model of quantum open
systems is the spin-boson model [2–4]: a two-level (spin-
1=2) system coupled to a bath of harmonic oscillators with
an infinite number of bosonic degrees of freedom [5–7].
The coupling to the heat bath drives a transition between a
localized (classical) and delocalized (quantum) state for the
spin, which is closely related with the long-range Ising
model [8,9] and quantum impurity models [10–14].
Though systems consisting of a single or a few spins

coupled to a heat bath have been discussed extensively
[5,7,15–17], the situation is much more complicated when
the system itself is an interacting quantum many-body
system. The interplay between many-body effects and
dissipation opens avenues for observing unknown and richer
phenomena [18–40] than what is expected on the basis of
these effects separately. Notwithstanding the intrinsic diffi-
culties with strong correlations, significant progress has been
made for fermionic systems with retarded interactions by
using determinant quantum Monte Carlo methods [41–43]
and dynamical mean field theory [44], and for one-
dimensional (1D) open quantum many-body systems using
bosonization [22,23,45]. Also some specific models such
as Ising-like Hamiltonians with site coupling of Ising spins
to the bath, or XY-like Hamiltonian with coupling of the

type σþbþ σ−b† have been studied but simulations were
typically performed for classical systems [46–50]. However,
studies of general (bosonic) quantummodels with the density
operator coupling to the bath have not been systematically
undertaken quantitatively. Quantum Monte Carlo (QMC)
simulations along the lines outlined in this work can in
general be applied to such models as long as the system has
a positive representation.
In this Letter we apply a numerically exact QMCmethod

with worm-type updates [51] implemented in Ref. [52]
(for a recent review, see Ref. [53]) to study the equilibrium
properties of open quantum many-body systems. Our work
is a natural generalization of previous seminal work on
spin-boson models [5,54] to the many-spin cases, where
each spin not only interacts with a local environment but
also with other spins. Away from half filling we find a
gapless, compressible, conducting but nonsuperfluid phase,
which has all the properties of a Bose liquid. Since it
only exists thanks to the harmonic bath, we term it a bath-
induced Bose liquid (BIBL). Throughout this Letter we will
use the language of hard-core bosons instead of the
equivalent spin-1=2 terminology.
Model and method.—We study a 1D lattice of L sites on

which hard-core bosons live with system Hamiltonian

Hs ¼
X
hiji

�
−tða†i aj þ a†jaiÞ þ V

�
ni −

1

2

��
nj −

1

2

��

− μ
X
i

ni; ð1Þ

where t denotes the hopping amplitude, V the nearest-
neighbor (NN) density-density interaction strength, and μ
the chemical potential (half filling corresponds toμ ¼ 0). This
Hamiltonian is equivalent to the XXZ model with a magnetic
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field. Our unit is t ¼ 1. We are interested in the ground state
and the critical properties of the quantum phase transitions,
which we will find from a finite size scaling assuming
dynamic exponent z ¼ 1 or 2 depending on the filling factor.
On each site i the density operator ni additionally couples to a
local bath (as in a spin-boson model) resulting in the full
Hamiltonian for the systemþ environment,

H¼Hsþ
X
i;k

�
λik

�
ni−

1

2

�
ðbikþb†ikÞþωikb

†
ikbik

�
; ð2Þ

where bi;k and b†i;k denote the annihilation and creation
operators of the bath with eigenmodes ωk on site i and
characterized by the spectral density

JðωÞ ¼ π
X
k

λ2kδðω − ωkÞ ¼ παωs ð0 < ω < ωDÞ; ð3Þ

where α represents the coupling strength. The spectral
function JðωÞ is chosen to be linear in ω corresponding to
Ohmic coupling (s ¼ 1) and has a hard frequency cutoff ωD
(ωD ¼ 10 in this work), JðωÞ ¼ 0 for ω > ωD.
The oscillator degrees of freedom can be integrated out

yielding a retarded density-density interaction term in
imaginary time. The partition function takes the form

Z ¼ Tre−βH ¼ ZB

Z
Da†iDaie−βHs−Sret ; ð4Þ

where Hsða; a†Þ is the system Hamiltonian and ZB ¼
Trfbikge

−β
P

ik
ωikb

†
ikbik the partition function for the free

bosons of the bath. Sret describes the effective action of
the on-site retarded interaction,

Sret ¼−
Z

β

0

dτ
Z

β

0

dτ0
X
i

�
niðτÞ−

1

2

�
Dðτ− τ0Þ

�
niðτ0Þ−

1

2

�
;

ð5Þ

with site-independent kernel [54]

Dðτ − τ0Þ ¼
Z

∞

0

dω
JðωÞ
π

coshðωβ
2
− ωjτ − τ0jÞ

sinhðβω
2
Þ : ð6Þ

The asymptotic behavior of the kernel at zero temperature
for τ ≫ τc is DðτÞ ∝ 1=τ1þs, where τc ¼ 2π=ωD is the
cutoff. For s ≤ 1 and thus including Ohmic dissipation
(s ¼ 1), power counting shows that the retardation is strong
enough to induce a transition (cf. the Ising model with long-
range interactions JðxÞ ∼ 1=x1þs [8]). Without dissipation
[α ¼ 0 in Eq. (3)], the XXZ model is free of the sign
problem. Monte Carlo simulations in the presence of
dissipation remain possible when keeping the retardation
in the exponent. The only change to the implementation of
the worm algorithm [51,52] is that the potential energy
needs to include the retardation; i.e., when the worm is

moving around in imaginary time, the evaluation of the
integrals resulting from the retardation is required.
Strong dissipative limit.—Before analyzing the numeri-

cal results, we perturbatively analyze the limit of strong
dissipation. For simplicity we take an XY model (V ¼ 0).
In the limit t=α → 0 quantum fluctuations are completely
suppressed. The system is then in a mixed state with an
equal-weight mixture of all possible Fock states of hard-
core bosons. Half filling requires a more careful analysis
beyond this zeroth order result. Turning on the tunneling
but staying in the regime t=α ≪ 1, we can treat the
tunneling terms as a perturbation, which we restrict to
second order virtual hopping processes. In the dual picture,
the world line configuration for the hard-core bosons can
be considered as a Coulomb gas of kinks and antikinks with
interactions that are local in space but long-range in
imaginary time, Vðτ1i − τ2jÞ ≈ −4αδij lnðjτ1i − τ2j j=τcÞ (that
is a 2D Coulombic interaction for a kink-antikink pair
located at τ1i and τ2j ). The ground-state (kinetic) energy
(per site) is then (see the Supplemental Material [55])

Eg=L ≈ −
t2τc

4α − 1
; ð7Þ

which agrees well with the numerical results, as is shown in
the Supplemental Material [55]. The system can find a
lower energy if it can maximize the number of bonds.
Therefore, at half filling, this will require an empty site to
be next to an occupied site, since two adjacent empty or
occupied sites can’t have virtual exchanges. We expect,
thus, a tendency towards a charge density wave (CDW)
with a gap Δ ∼ Eg=L.
Incommensurate filling.—We now switch to the discus-

sion of the numerical results. We first focus on the case of
incommensurate filling of the hard-core bosons (μ ≠ 0).
In the absence of dissipation, the physics is relatively
straightforward: the ground state is a Luttinger liquid
(LL) irrespective of the interaction strength. To study the
competition between quantum fluctuations and dissipation
we set V ¼ 0 in Eq. (1) and address the problem of how the
dissipation can qualitatively change the nature of the LL
phase. To distinguish various quantum phases, we first study
the single particle correlation function GðrÞ ¼ ha†i aiþri for
differentα. As shown in Figs. 1(a) and 1(b), the single particle
correlation function decays algebraically for weak dissipa-
tion, while for strong dissipation it decays exponentially. We
also study the density correlation functions in (imaginary)
time and space. We see that the on-site unequal-(imaginary)
time density correlation function SðτÞ ¼ P

ihðniðτÞ −
n̄Þðnið0Þ − n̄Þi=L with n̄ the density of the particle and n̄ ≈
1=3 [shown in Figs. 1(c) and 1(d)] decays algebraicallywith τ
for strong dissipation. This decay becomes, however,
extremely weak with increasing α, e.g., for α ¼ 0.5,
L ¼ 4, and β ¼ 108 it is just 0.03. Although this decay
increases rapidly with β we expect it to connect continuously
to a constant in the limit t=α → 0. The equal-time density
correlation functions SðrÞ ¼ jhðni − n̄Þðniþr − n̄Þij decay
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algebraically with distance for weak dissipation, while
for strong dissipation Fig. 1(d) shows an exponential
decay enveloping a density-dependent oscillatory factor,
SðrÞ ∼ je−γr cosð2πrn̄Þj. However, in contrast to GðrÞ, we
find thatSðrÞ ismuchmore sensitive to temperature.Basedon
a finite β scaling of the factor γ [see the inset of Fig. 2(d) for
α ¼ 0.36], it is difficult to determine numerically whether γ
extrapolates to a very small but finite value or zero at zero
temperature. Therefore, an algebraic decay (γ → 0) for SðrÞ
at zero temperature is possible [23]. The different behaviors of
the correlation functions for weak and strong dissipation
clearly indicate two distinct phases: in case of weak dis-
sipation we have a Luttinger liquid (LL) while for strong
dissipation we find the many-body counterpart of the local-
ized phase in the spin-boson model.
To study the transition between the two distinct phases,

we calculate other observables of interest such as the
superfluid density ρs and the compressibility κ (or equiv-
alently the variance of winding number hW2i ¼ βρs=L [56]
and particle number ΔN ¼ hN2i − hNi2 ¼ Lκ=β, see the
Supplemental Material [55]). In Fig. 1(e), we plotted hW2i
using the scaling relation with z ¼ 2, and found an
intersection point between the different system sizes at
the point α ¼ 0.33ð1Þ, indicating that the transition from
LL to BIBL is not a Kosterlitz-Thouless type with z ¼ 1 as
predicted by bosonization [23], but a continuous transition
with z ¼ 2 as in Ref. [48]. The ρs is nonzero in the LL but
approaches 0 in the BIBL phase. On the other hand, the
variance of particle number, shown in Fig. 1(f), is larger in
the BIBL than in the LL phase, indicating that the BIBL
phase is a highly compressible phase with no charge gap.
Furthermore, the BIBL has diffusive charge excitations

resulting in a nonzero conductivity [23] (also see the
Supplemental Material [55]).
Half filling.—Now we turn to the half filled case (μ ¼ 0)

and focus on the XY model first (V ¼ 0) first. For weak
dissipation, we find a LL phase just as in the incommensu-
rate filling case. However, for strong dissipation, we find a
Mott-insulator with CDW long-range order, which is char-
acterized by an extensive staggered structure factor, found
by Fourier transform of the density correlation function:
SðQ¼πÞ¼ð1=L2ÞPi;jð−1Þi−jhðni−1

2
Þðnj−1

2
Þi. The finite-

size scaling in Fig. 2(b) indicates that in the thermodynamic
limit CDW long-range order emerges for α > αc ≈ 0.2. The
dissipation-driven LL-to-CDW phase transition is reminis-
cent of a similar phase transition driven by the nearest-
neighbor density-density interactions at constant density.
Since the retardation is irrelevant in the LL phase, we
analyze the transition from the LL side using LL terminol-
ogy and anticipate a Kosterlitz-Thouless (KT) transition.
This can numerically be verified from the dependence of

the Luttinger parameter K ¼ π
ffiffiffiffiffiffiffi
ρsκ

p
on α, as shown in

Fig. 2(a). By performing a renormalization flow analysis
(see the Supplemental Material [55]), we can extract the
position of the KT transition point in the thermodynamical
limit [αc ¼ 0.20ð1Þ], which is characterized by a sudden
jump of the Luttinger parameter from KcðL ¼ ∞Þ ¼
0.75ð3Þ to 0 determined via a Weber-Minnhagen fit [57].
The critical value of the Luttinger parameter Kc cannot be
understood from the lowest order renormalization-group
equations [45] and a full explanation goes beyond the scope
of this work. The KT phase transitions with nonuniversal
Kc have been observed in different contexts [58,59]. Within
our accuracy, the disappearance of ρs coincides with the

(a) (b) (c)

(d) (e) (f)

FIG. 1 (color online). Single particle correlation function GðrÞ in (a) the LL phase (algebraic decay); (b) the BIBL phase (exponential
decay) [L ¼ 96, β ¼ 48, μ ¼ −0.1 for (a) and (b)]; (c) unequal-(imaginary) time density correlation functions SðτÞ and (d) equal-time
density correlation function SðrÞ in the BIBL phase for different β, the inset is the finite-β scaling of the exponent γ; [L ¼ 72,
μ ¼ −0.22, α ¼ 0.36 for (c) and (d)]; (e) The variance of winding number hW2i and (f) the particle number ΔN ¼ hN2i − hNi2 as a
function of α with the z ¼ 2 scaling; [μ ¼ −0.1, β ¼ L2=8 for (e) and (f)].

PRL 113, 260403 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

31 DECEMBER 2014

260403-3



onset of the CDW order and the charge gap [shown in
Fig. 2(c)]. However, the gap in the massive phase of the KT
transition may be exponentially small and reading off such
a gap is prone to error. Note that the CDWorder is induced
entirely by the dissipation, which reminds us of the Peierls
transition in low-dimensional electron materials [60].
To complete the discussion and the phase diagram at half

filling,we also study the effect ofNN interactions [as shown in
Fig. 2(d)]. The situation without dissipation [α ¼ 0 in Eq. (3)]
is well understood: the NN interactions can drive the system
from a LL to a CDW Mott insulator at the critical point
Vc ¼ 2t via a KT transition with Kc ¼ 1=2. Turning on the
dissipation suppresses quantum tunneling. We therefore
expect that dissipation will make it easier for the system to
access the CDWMott-insulating state. This is reflected in the
numerics as is shown in Figs. 2(c) and 2(d), where we see that
forweak dissipation (α ¼ 0.1) the phase transition point of the
LL-CDW transition is shifted down to Vc ¼ 0.5t. Along the
phase boundary between the LL and the CDW, the critical
Luttinger parameter changes continuously from Kc ¼ 0.5 at
V ¼ 2 (and α ¼ 0) to Kc ¼ 0.75ð3Þ at V ¼ 0 as is shown in
the inset of Fig. 2(d). Within our accuracy, we saw no sign of
an intermittent BIBL phase at half filling.
Experimental realization and detection.—Hard-core

bosons with Ohmic dissipation can be realized in a
Bose-Fermi mixture in an optical lattice by embedding
quasi-1D heavy bosons with strong repulsive interaction
into a 3D Fermi sea composed of light fermions [45]. The
BIBL phase is characterized by the exponential decay of
the single-particle correlation function with distance, which
can be seen in time-of-flight interference experiments.
The finite compressibility and the density-density correla-
tion function can be measured with in situ single-site

resolution techniques [61,62]. Conductivity measurements
would require phase modulation of the lattice [63].
Conclusion and outlook.—In summary, we generalize the

worm algorithm to study a 1D open quantum many-body
model consisting of hard-core bosons where the density of
every particle couples Ohmically to an independent, local
bath. Away from half filling, we found a homogeneous,
compressible, conducting but nonsuperfluid bath-induced
Bose liquid phase, which can be seen as the many-body
generalization of the localized states in the spin-boson
model. At half filling, we find a KT type phase transition
between the CDWand LL phases, but with a critical value of
the Luttinger parameter that is in general nonuniversal. Our
method can be applied to all open bosonic and unfrustrated
spin systems with a similar form of the density-type
coupling to the bath, in one or higher dimensions, and with
Ohmic or non-Ohmic dissipation. In future work, the
generalization of ourmethod to higher dimensional systems,
or systems with a different Hamiltonian (e.g., gapped
systems) or different type of dissipation (e.g., sub-Ohmic)
will be studied, as well as the entanglement properties.
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(a) (b) (c)

(f)(e)(d)

FIG. 2 (color online). (a) Luttinger parameter K as a function of α and finite-size scaling of (b) the staggered structure factor SðQÞ and
(c) the charge gap Δ for different α [V ¼ 0, μ ¼ 0 for (a)–(c)]. (d) Phase diagram at half filling in the α-V plane (inset: the dependence
of the critical Luttinger parameter Kc on α). (e) Luttinger parameter K as a function of V, and (f) finite-size scaling of SðQÞ for different
V [α ¼ 0.1, μ ¼ 0 for (e) and (f)]. Error bars are shown but may be smaller than the point size of the symbols; the scaling relation for
(a)–(f) is β ¼ L=2 for z ¼ 1.

PRL 113, 260403 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

31 DECEMBER 2014

260403-4



[1] P. Hänggi, G.-L. Ingold, and P. Talkner, New J. Phys. 10,
115008 (2008).

[2] A. O. Caldeira and A. J. Leggett, Phys. Rev. Lett. 46, 211
(1981).

[3] A. O. Caldeira and A. J. Leggett, Ann. Phys. (N.Y.) 149, 374
(1983).

[4] A. O. Caldeira and A. J. Leggett, Physica (Amsterdam)
121A, 578 (1983).

[5] A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher,
A. Garg, and W. Zwerger, Rev. Mod. Phys. 59, 1 (1987).

[6] H. Grabert, P. Schramm, and G.-L. Ingold, Phys. Rep. 168,
115 (1988).

[7] U. Weiss, Quantum Dissipative Systems (World Scientific,
Singapore, 1999).

[8] F. Dyson, Commun. Math. Phys. 12, 91 (1969).
[9] J. M. Kosterlitz, Phys. Rev. Lett. 37, 1577 (1976).

[10] P. W. Anderson, G. Yuval, and D. R. Hamann, Phys. Rev. B
1, 4464 (1970).

[11] V. J. Emery and A. Luther, Phys. Rev. B 9, 215 (1974).
[12] S. Chakravarty, Phys. Rev. Lett. 49, 681 (1982).
[13] A. J. Bray andM.A.Moore, Phys. Rev. Lett. 49, 1545 (1982).
[14] F. Guinea, V. Hakim, and A. Muramatsu, Phys. Rev. B 32,

4410 (1985).
[15] M. Vojta, Philos. Mag. 86, 1807 (2006).
[16] K. Le Hur, Ann. Phys. (Amsterdam) 323, 2208 (2008).
[17] R. Bulla, T. A. Costi, and T. Pruschke, Rev. Mod. Phys. 80,

395 (2008).
[18] S. Chakravarty, G.-L. Ingold, S. Kivelson, and A. Luther,

Phys. Rev. Lett. 56, 2303 (1986).
[19] M. P. A. Fisher, Phys. Rev. B 36, 1917 (1987).
[20] A. Kapitulnik, N. Mason, S. A. Kivelson, and S. Chakravarty,

Phys. Rev. B 63, 125322 (2001).
[21] D. Dalidovich and P. Phillips, Phys. Rev. Lett. 89, 027001

(2002).
[22] A. H. Castro Neto, C. de C. Chamon, and C. Nayak, Phys.

Rev. Lett. 79, 4629 (1997).
[23] M. A. Cazalilla, F. Sols, and F. Guinea, Phys. Rev. Lett. 97,

076401 (2006).
[24] S. Diehl, A. Micheli, A. Kantian, B. Kraus, H. Büchler, and

P. Zoller, Nat. Phys. 4, 878 (2008).
[25] T. Prosen and I. Pižorn, Phys. Rev. Lett. 101, 105701

(2008).
[26] M.W. F. Verstraete and J. Cirac, Nat. Phys. 5, 633 (2009).
[27] A. J. Daley, J. M. Taylor, S. Diehl, M. Baranov, and

P. Zoller, Phys. Rev. Lett. 102, 040402 (2009).
[28] E. G. Dalla Torre, E. Demler, T. Giamarchi, and E. Altman,

Nat. Phys. 6, 806 (2010).
[29] D. Poletti, J.-S. Bernier, A. Georges, and C. Kollath, Phys.

Rev. Lett. 109, 045302 (2012).
[30] A. M. Lobos and T. Giamarchi, Phys. Rev. B 84, 024523

(2011).
[31] A. M. Lobos, M. A. Cazalilla, and P. Chudzinski, Phys. Rev.

B 86, 035455 (2012).
[32] J. T. Barreiro, P. Schindler, O. Gühne, T. Monz, M. Chwalla,

C. F. Roos, M. Hennrich, and R. Blatt, Nat. Phys. 6, 943
(2010).

[33] J. T. Barreiro, M. Müller, P. Schindler, D. Nigg, T. Monz,
M. Chwalla, M. Hennrich, C. F. Roos, P. Zoller, and R.
Blatt, Nature (London) 470, 486 (2011).

[34] D. Chen, C. Meldgin, and B. DeMarco, Phys. Rev. A 90,
013602 (2014).

[35] A. Rançon, C.-L. Hung, C. Chin, and K. Levin, Phys. Rev.
A 88, 031601 (2013).

[36] J. Schachenmayer, L. Pollet, M. Troyer, and A. J. Daley,
Phys. Rev. A 89, 011601 (2014).

[37] U. Schneider, L. Hackermüller, S. Will, T. Best, I. Bloch,
T. A. Costi, R. W. Helmes, D. Rasch, and A. Rosch, Nat.
Phys. 9, 361 (2013).

[38] L. M. Sieberer, S. D. Huber, E. Altman, and S. Diehl, Phys.
Rev. Lett. 110, 195301 (2013).

[39] Z. Cai and T. Barthel, Phys. Rev. Lett. 111, 150403 (2013).
[40] A. Winter and H. Rieger, Phys. Rev. B 90, 224401 (2014).
[41] F. F. Assaad and T. C. Lang, Phys. Rev. B 76, 035116 (2007).
[42] M. Hohenadler, F. F. Assaad, and H. Fehske, Phys. Rev.

Lett. 109, 116407 (2012).
[43] M. Raczkowski, P. Zhang, F. F. Assaad, T. Pruschke, and

M. Jarrell, Phys. Rev. B 81, 054444 (2010).
[44] P. Werner and A. J. Millis, Phys. Rev. Lett. 104, 146401

(2010).
[45] E. Malatsetxebarria, Z. Cai, U. Schollwöck, and M. A.

Cazalilla, Phys. Rev. A 88, 063630 (2013).
[46] P. Werner, K. Völker, M. Troyer, and S. Chakravarty, Phys.

Rev. Lett. 94, 047201 (2005).
[47] P. Werner, M. Troyer, and S. Sachdev, J. Phys. Soc. Jpn.

Suppl. 74, 67 (2005).
[48] P.Werner andM. Troyer, Phys. Rev. Lett. 95, 060201 (2005).
[49] I. B. Sperstad, E. B. Stiansen, and A. Sudbø, Phys. Rev. B

84, 180503 (2011).
[50] E. B. Stiansen, I. B. Sperstad, and A. Sudbø, Phys. Rev. B

85, 224531 (2012).
[51] N. V. Prokof’ev, B. V. Svistunov, and I. S. Tupitsyn, Phys.

Lett. A 238, 253 (1998).
[52] L. Pollet, K. V. Houcke, and S. M. A. Rombouts, J. Comp.

Physiol. 225, 2249 (2007).
[53] L. Pollet, Rep. Prog. Phys. 75, 094501 (2012).
[54] A. Winter, H. Rieger, M. Vojta, and R. Bulla, Phys. Rev.

Lett. 102, 030601 (2009).
[55] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.113.260403 for a proof
of the absence of the sign problem in our QMC simulations,
and a bosonization analysis on the bath induced bose liquid
(BIBL), especially the conductivity, as well as further details
on the computation of the superfluid density, compressibil-
ity, the analysis of the Luttinger parameter, and a second
order perturbation theory in the strong dissipative limit.
Supplemental Material includes Refs. [23,45,57,58].

[56] E. L. Pollock and D.M. Ceperley, Phys. Rev. B 36, 8343
(1987).

[57] H. Weber and P. Minnhagen, Phys. Rev. B 37, 5986 (1988).
[58] B. Horovitz, T. Giamarchi, and P. Le Doussal, Phys. Rev.

Lett. 111, 115302 (2013).
[59] L. Pollet, N. V. Prokof’ev, and B. V. Svistunov, Phys. Rev. B

89, 054204 (2014).
[60] J. P. Pouget and R. Comes, Charge Density Waves in Solids

(North Holland, Amsterdam, 1989).
[61] W. S. Bakr, A. Peng, M. E. Tai, R. Ma, J. Simon, J. I. Gillen,

S. Fölling, L. Pollet, and M. Greiner, Science 329, 547
(2010).

[62] J. F. Sherson, C. Weitenberg, M. Endres, M. Cheneau,
I. Bloch, and S. Kuhr, Nature (London) 467, 68 (2010).

[63] A. Tokuno and T. Giamarchi, Phys. Rev. Lett. 106, 205301
(2011).

PRL 113, 260403 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

31 DECEMBER 2014

260403-5

http://dx.doi.org/10.1088/1367-2630/10/11/115008
http://dx.doi.org/10.1088/1367-2630/10/11/115008
http://dx.doi.org/10.1103/PhysRevLett.46.211
http://dx.doi.org/10.1103/PhysRevLett.46.211
http://dx.doi.org/10.1016/0003-4916(83)90202-6
http://dx.doi.org/10.1016/0003-4916(83)90202-6
http://dx.doi.org/10.1103/RevModPhys.59.1
http://dx.doi.org/10.1016/0370-1573(88)90023-3
http://dx.doi.org/10.1016/0370-1573(88)90023-3
http://dx.doi.org/10.1007/BF01645907
http://dx.doi.org/10.1103/PhysRevLett.37.1577
http://dx.doi.org/10.1103/PhysRevB.1.4464
http://dx.doi.org/10.1103/PhysRevB.1.4464
http://dx.doi.org/10.1103/PhysRevB.9.215
http://dx.doi.org/10.1103/PhysRevLett.49.681
http://dx.doi.org/10.1103/PhysRevLett.49.1545
http://dx.doi.org/10.1103/PhysRevB.32.4410
http://dx.doi.org/10.1103/PhysRevB.32.4410
http://dx.doi.org/10.1080/14786430500070396
http://dx.doi.org/10.1016/j.aop.2007.12.003
http://dx.doi.org/10.1103/RevModPhys.80.395
http://dx.doi.org/10.1103/RevModPhys.80.395
http://dx.doi.org/10.1103/PhysRevLett.56.2303
http://dx.doi.org/10.1103/PhysRevB.36.1917
http://dx.doi.org/10.1103/PhysRevB.63.125322
http://dx.doi.org/10.1103/PhysRevLett.89.027001
http://dx.doi.org/10.1103/PhysRevLett.89.027001
http://dx.doi.org/10.1103/PhysRevLett.79.4629
http://dx.doi.org/10.1103/PhysRevLett.79.4629
http://dx.doi.org/10.1103/PhysRevLett.97.076401
http://dx.doi.org/10.1103/PhysRevLett.97.076401
http://dx.doi.org/10.1038/nphys1073
http://dx.doi.org/10.1103/PhysRevLett.101.105701
http://dx.doi.org/10.1103/PhysRevLett.101.105701
http://dx.doi.org/10.1038/nphys1342
http://dx.doi.org/10.1103/PhysRevLett.102.040402
http://dx.doi.org/10.1038/nphys1754
http://dx.doi.org/10.1103/PhysRevLett.109.045302
http://dx.doi.org/10.1103/PhysRevLett.109.045302
http://dx.doi.org/10.1103/PhysRevB.84.024523
http://dx.doi.org/10.1103/PhysRevB.84.024523
http://dx.doi.org/10.1103/PhysRevB.86.035455
http://dx.doi.org/10.1103/PhysRevB.86.035455
http://dx.doi.org/10.1038/nphys1781
http://dx.doi.org/10.1038/nphys1781
http://dx.doi.org/10.1038/nature09801
http://dx.doi.org/10.1103/PhysRevA.90.013602
http://dx.doi.org/10.1103/PhysRevA.90.013602
http://dx.doi.org/10.1103/PhysRevA.88.031601
http://dx.doi.org/10.1103/PhysRevA.88.031601
http://dx.doi.org/10.1103/PhysRevA.89.011601
http://dx.doi.org/10.1038/nphys2630
http://dx.doi.org/10.1038/nphys2630
http://dx.doi.org/10.1103/PhysRevLett.110.195301
http://dx.doi.org/10.1103/PhysRevLett.110.195301
http://dx.doi.org/10.1103/PhysRevLett.111.150403
http://dx.doi.org/10.1103/PhysRevB.90.224401
http://dx.doi.org/10.1103/PhysRevB.76.035116
http://dx.doi.org/10.1103/PhysRevLett.109.116407
http://dx.doi.org/10.1103/PhysRevLett.109.116407
http://dx.doi.org/10.1103/PhysRevB.81.054444
http://dx.doi.org/10.1103/PhysRevLett.104.146401
http://dx.doi.org/10.1103/PhysRevLett.104.146401
http://dx.doi.org/10.1103/PhysRevA.88.063630
http://dx.doi.org/10.1103/PhysRevLett.94.047201
http://dx.doi.org/10.1103/PhysRevLett.94.047201
http://dx.doi.org/10.1143/JPSJ.74.67
http://dx.doi.org/10.1143/JPSJ.74.67
http://dx.doi.org/10.1103/PhysRevLett.95.060201
http://dx.doi.org/10.1103/PhysRevB.84.180503
http://dx.doi.org/10.1103/PhysRevB.84.180503
http://dx.doi.org/10.1103/PhysRevB.85.224531
http://dx.doi.org/10.1103/PhysRevB.85.224531
http://dx.doi.org/10.1016/S0375-9601(97)00957-2
http://dx.doi.org/10.1016/S0375-9601(97)00957-2
http://dx.doi.org/10.1016/j.jcp.2007.03.013
http://dx.doi.org/10.1016/j.jcp.2007.03.013
http://dx.doi.org/10.1088/0034-4885/75/9/094501
http://dx.doi.org/10.1103/PhysRevLett.102.030601
http://dx.doi.org/10.1103/PhysRevLett.102.030601
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.260403
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.260403
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.260403
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.260403
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.260403
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.260403
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.260403
http://dx.doi.org/10.1103/PhysRevB.36.8343
http://dx.doi.org/10.1103/PhysRevB.36.8343
http://dx.doi.org/10.1103/PhysRevB.37.5986
http://dx.doi.org/10.1103/PhysRevLett.111.115302
http://dx.doi.org/10.1103/PhysRevLett.111.115302
http://dx.doi.org/10.1103/PhysRevB.89.054204
http://dx.doi.org/10.1103/PhysRevB.89.054204
http://dx.doi.org/10.1126/science.1192368
http://dx.doi.org/10.1126/science.1192368
http://dx.doi.org/10.1038/nature09378
http://dx.doi.org/10.1103/PhysRevLett.106.205301
http://dx.doi.org/10.1103/PhysRevLett.106.205301

