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The Heisenberg-Robertson uncertainty relation expresses a limitation in the possible preparations of the
system by giving a lower bound to the product of the variances of two observables in terms of their
commutator. Notably, it does not capture the concept of incompatible observables because it can be trivial;
i.e., the lower bound can be null even for two noncompatible observables. Here we give two stronger
uncertainty relations, relating to the sum of variances, whose lower bound is guaranteed to be nontrivial
whenever the two observables are incompatible on the state of the system.
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In his seminal paper [1,2], Heisenberg analyzes various
notions of uncertainties for measurement of noncommuting
observables in quantum theory. Here we deal with
Robertson’s formalization [3] that implies a restriction
on the possible preparations of the properties of a system.
Indeed, the Heisenberg-Robertson uncertainty relation
quantitatively expresses the impossibility of jointly sharp
preparation of incompatible observables. However, in
practice, the conventional uncertainty relations cannot
achieve this, because the lower bound in the uncertainty
relation inequalities can be null and hence trivial even for
observables that are incompatible on the state of the system
(namely, the state is not a common eigenstate of both
observables). This is due to the fact that the uncertainty
relations are expressed in terms of the product ΔA2ΔB2 of
the variances of the measurement results of the observables
A and B, and the product can be null even when one of
the two variances is different from zero. Here we provide
a different uncertainty relation, based on the sum
ΔA2 þ ΔB2, that is guaranteed to be nontrivial whenever
the observables are incompatible on the state.
Uncertainty relations are useful for a wide range of

applications that span from the foundations of physics all
the way to technological applications: they are useful for
formulating quantum mechanics [4] (e.g., to justify the
complex structure of the Hilbert space [5] or as a funda-
mental building block for quantummechanics and quantum
gravity [6]), for entanglement detection [7,8], for the
security analysis of quantum key distribution in quantum
cryptography (e.g., see [9]), etc. Previous uncertainty
relations that provide a bound to the sum of the variances
comprise a lower bound in terms of the variance of the sum
of observables [10], a lower bound based on the entropic
uncertainty relations [11], and a sum uncertainty relation
for angular momentum observables [12]. In contrast to the
last, our bound applies to general observables, and in

contrast to the previous ones, it is built to be strictly positive
if the observables are incompatible on the state of the
system.
Stronger uncertainty relations.—The Heisenberg-

Robertson uncertainty relation [3] bounds the product
of the variances through the expectation value of the
commutator

ΔA2ΔB2 ≥
���� 12 h½A;B�i

����
2

; ð1Þ

where the expectation value and the variances are calcu-
lated on the state of the quantum system jψi. It was
strengthened by Schrödinger [13] who pointed out that one
can add an anticommutator term, obtaining

ΔA2ΔB2 ≥
���� 12 h½A; B�i

����
2

þ
���� 12 hfA; Bgþi − hAihBi

����
2

: ð2Þ

Both these inequalities can be trivial even in the case in
which A and B are incompatible on the state of the system
jψi, e.g., if jψi is an eigenstate of A, all terms in (1) and (2)
vanish. Both relations can be derived through an applica-
tion of the Cauchy-Schwarz inequality.
A simple lower bound for the sum of the variances can be

obtained from these, by noticing that ðΔA − ΔBÞ2 ≥ 0, so
that, using (1), we find ΔA2 þ ΔB2 ≥ 2ΔAΔB ≥ jh½A;B�ij.
This inequality is still not useful, as the lower bound can
be null even if A and B are incompatible on jψi so that the
sum is trivially bounded as ΔA2 þ ΔB2 > 0. Instead, the
following two inequalities (which are the main result of this
Letter) have lower bounds which are nontrivial. The first
inequality is

ΔA2 þ ΔB2 ≥ �ih½A; B�i þ jhψ jA� iBjψ⊥ij2; ð3Þ

which is valid for arbitrary states jψ⊥i orthogonal to the
state of the system jψi, where the sign should be chosen
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so that �ih½A;B�i (a real quantity) is positive. The lower
bound in (3) is nonzero for almost any choice of jψ⊥i if jψi
is not a common eigenstate of A and B (Fig. 1): just choose
jψ⊥i that is orthogonal to jψi but not orthogonal to the state
ðA� iBÞjψi. Such a choice is always possible unless jψi is
a joint eigenstate of A and B.
For illustration, we give an example of how one can

choose jψ⊥i: if jψi is an eigenstate of A one can choose
jψ⊥i ¼ ðB − hBiÞjψi=ΔB≡ jψ⊥

B i (see below), or jψ⊥i ¼
ðA − hAiÞjψi=ΔA≡ jψ⊥

A i, if jψi is an eigenstate ofB. If jψi
is not an eigenstate of either and jψ⊥

A i ≠ jψ⊥
B i, one can choose

jψ⊥i ∝ ð1 − jψ⊥
B ihψ⊥

B jÞjψ⊥
A i, or jψ⊥i ¼ jψ⊥

A i if jψ⊥
A i ¼

jψ⊥
B i. An optimization of jψ⊥i (namely, the choice that

maximizes the lower bound), will saturate the inequality
(3): it becomes an equality.
A second inequality with nontrivial bound even if jψi is

an eigenstate either of A or of B is

ΔA2 þ ΔB2 ≥
1

2
jhψ⊥

AþBjAþ Bjψij2; ð4Þ

where jψ⊥
AþBi ∝ ðAþ B − hAþ BiÞjψi is a state orthogo-

nal to jψi (with hOi denoting the expectation value of O).
The form of jψ⊥

AþBi implies that the right-hand side of (4) is
nonzero unless jψi is an eigenstate of Aþ B.
Clearly, both inequalities (3) and (4) can be combined in

a single uncertainty relation for the sum of variances:

ΔA2 þ ΔB2 ≥ maxðLð3Þ;Lð4ÞÞ; ð5Þ
with Lð3Þ;ð4Þ the right-hand side of (3) and (4), respectively.
Some comments on (3) and (4) follow: (i) they involve

the sum of variances, so one must introduce some dimen-
sional constants in the case in which A and B are measured
with different units; (ii) removing the last term in (3), we
find the inequality ΔA2 þ ΔB2 ≥ jh½A; B�ij implied by the
Heisenberg-Robertson relation, as shown above; (iii) using
the same techniques employed to derive (3), one can also
obtain an amended Heisenberg-Robertson inequality:

ΔAΔB≥� i
2
h½A;B�i=

�
1−

1

2

����hψ j AΔA� i
B
ΔB

jψ⊥i
����
2
�
; ð6Þ

which reduces to (1) when minimizing the lower bound
over jψ⊥i and becomes an equality when maximizing it.
Proofs of the results.—In this section we provide two

proofs of the proposed uncertainty relations (3), (4), and
(6). The first proof, based on the parallelogram law, was
communicated to us by an anonymous referee, while the
second (independent) proof was our original argument.
While the first proof is preferable because of its simplicity,
we retain also the second for completeness.
To prove (3), define C≡ A − hAi, D≡ B − hBi so

ΔA ¼ ∥Cjψi∥, ΔB ¼ ∥iDjψi∥, where the imaginary unit
i is introduced for later convenience. We have

∥ðC ∓ iDÞjψi∥2 ¼ ΔA2 þ ΔB2 ∓ ih½A;B�i; ð7Þ
where the left-hand side can be lower bounded through the
Schwarz inequality as

jhψ jðA� iBÞjψ⊥ij2¼ jhψ jA� iB− hA� iBijψ⊥ij2
¼ jhψ jC� iDjψ⊥ij2 ≤ ∥ðC∓ iDÞjψi∥2;

ð8Þ
valid for all jψ⊥i orthogonal to jψi, whence (3) follows by
joining (7) and (8). The equality condition for (3) follows
from the equality condition of the Schwarz inequality,
namely, if and only if jψ⊥i ∝ ðA ∓ iB − hA ∓ iBiÞjψi.
Up to now we have considered only a pure state jψi of

the system. This relation can be extended to the case of
mixed states ρ ¼ P

jpjjψ jihψ jj at least in the case in which
it is possible to choose a jψ⊥i that is orthogonal to all states
jψ ji (in the other cases, it is still possible to use the
inequality, but it cannot be expressed as an expectation
value for the density matrix). For each state jψ ji we can
write (3) as
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FIG. 1 (color online). Example of comparison between the
Heisenberg-Robertson uncertainty relation (1) and the new ones
(3), (4). We choose A ¼ Jx and B ¼ Jy, two components of the
angular momentum for a spin-1 particle, and a family of states
parametrized by φ as jψi ¼ cosφjþi þ sinφj−i, with j�i
eigenstates of Jz corresponding to the eigenvalues �1. None
of these is a joint eigenstate of Jx and Jy, nonetheless the
Heisenberg-Robertson relation can be trivial for φ ¼ π=4 and
φ ¼ 3π=4. The lower curves are the product of the uncertainties
and the expectation value of the commutator (this is a favorable
case for the Heisenberg-Robertson relation since the product of
uncertainties and its lower bound coincide). The upper curve is
ΔJ2x þ ΔJ2y ¼ 1 (it is constant for this family of states). The dash-
dotted line is the bound (4), the black points are the calculation of
the bound (3) for 20 randomly chosen states jψ⊥i for each of the
200 values of the phase φ depicted. It is clear that the bound (3)
well outperforms the Heisenberg-Robertson relation for almost
all choices of jψ⊥i. [The random jψ⊥i are generated by
generating a random unitary U (uniform in the Haar measure)
using the procedure detailed in [14], applying it to the jþi state,
projecting on the orthogonal subspace to jψi, and renormalizing
the resulting state. Namely, jψ⊥i ∝ ð1 − jψihψ jÞUjþi.]

PRL 113, 260401 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

31 DECEMBER 2014

260401-2



ΔA2
j þ ΔB2

j ≥∓ iTrð½A;B�jψ jihψ jjÞ
þ Tr½ð−A� iBÞjψ⊥ihψ⊥jð−A ∓ iBÞjψ jihψ jj�; ð9Þ

where ΔA2
j and ΔB2

j are the variances calculated on jψ ji.
By multiplying both members by pj and summing over j,
we obtain the mixed-state extension of (3):

ΔA2 þ ΔB2 ≥∓ ih½A;B�i
þ hð−A� iBÞjψ⊥ihψ⊥jð−A ∓ iBÞi: ð10Þ

To prove (4) we use the parallelogram law in Hilbert
space to obtain

2ΔA2 þ 2ΔB2 ¼ ∥Cþ αDjψi∥2 þ ∥C − αDjψi∥2; ð11Þ

for C ¼ A − hAi, D ¼ B − hBi, and α ∈ C with jαj ¼ 1.
Since ΔðAþBÞ¼∥ðCþDÞjψi∥, ΔðA−BÞ¼∥ðC−DÞjψi∥,
Eq. (11) for α ¼ 1 is equal to

ΔA2 þ ΔB2 ¼ 1

2
½ΔðAþ BÞ2 þ ΔðA − BÞ2�

≥
1

2
ΔðAþ BÞ2; ð12Þ

which is equivalent to (4) since ΔðAþ BÞ2 ¼
jhψ⊥

AþBjAþ Bjψij2. The equality condition for (4) is
immediate from (12): jψi must be an eigenstate of
A − B. Also, note that the lower bound in (4) is nonzero
unless jψi is an eigenstate of Aþ B. Clearly jψi can be an
eigenstate of Aþ B without being an eigenstate of either A
or B, but in the interesting case when jψi is an eigenstate of
one of the two (which trivializes both Heisenberg’s and
Schrödinger’s uncertainty relations), the lower bound must
be nonzero unless jψi is an eigenstate of both. It is also
easy to use (12) to modify the inequality (4) so that it has
always a nontrivial lower bound except when jψi is a joint
eigenstate of A and B, namely,

ΔA2 þ ΔB2 ≥ max

�
1

2
jhψ⊥

AþBjAþ Bjψij2; jhψ⊥
A jAjψij2;

jhψ⊥
B jBjψij2

�
: ð13Þ

[Note that one can also obtain (3) from the parallelogram
law (11) for α ¼ �i.]
We now provide a second proof of (3) and (4), and a

proof of (6). They use the square-modulus inequality and
follow a procedure analogous to the one employed by
Holevo to derive the following useful relation [15]:

ΔAþ ΔA0 ≥ ða − a0Þjhψ jψ 0ij=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − jhψ jψ 0ijÞ

p
; ð14Þ

where a, a0 are the expectation values of A on the states jψi
and jψ 0i, respectively, ΔA2 and ΔA02 are the variances on
the same states.
To derive (3), start from the inequality

∥cAϵðA− aÞjψi � icBðB− b0Þjψ 0i þ cðϵjψi− jψ 0iÞ∥2 ≥ 0;

ð15Þ

with a ¼ hψ jAjψi, b0 ¼ hψ 0jBjψ 0i, ϵ≡ hψ jψ 0i=jhψ jψ 0ij,
and cA, cB, and c real constants. Calculating the square
modulus, we find

c2AΔA2 þ c2BΔB02 ≥ −c2γ − cAcBcδ ∓ icAcBκ; ð16Þ

with ΔA2 and ΔB02 the variances of A and B on jψi
and jψ 0i, respectively, and where γ ≡ 2ð1 − jhψ jψ 0ijÞ,
δ ¼ 2Re½ϵ�hψ jða − AÞ=cB � iðB − b0Þ=cAjψ 0i�, and κ≡
2iImðϵ�hψ jðA − aÞðB − b0Þjψ 0iÞ. Now choose the value
of c that maximizes the right-hand side of (16) (assuming
that one chooses the sign so the last term is positive), namely,
c ¼ −cAcBδ=ð2γÞ. Whence, inequality (16) becomes

c2AΔA2 þ c2BΔB02 ≥ ðcAcBδÞ2=ð4γÞ ∓ icAcBκ: ð17Þ

Depending on the choice of cA and cB one can prove (3) or
(6). Start with the former by taking cA ¼ cB ¼ 1, we find

ΔA2 þ ΔB02 ≥
δ2

4γ
∓ iκ ¼ ½Reðϵhψ 0jð−Ā ∓ iB̄0ÞjψiÞ�2

2ð1 − jhψ jψ 0ijÞ
∓ iðϵ�hψ jĀB̄0jψ 0i − ϵhψ 0jB̄0ĀjψiÞ; ð18Þ

where Ā≡ A − a and B̄0 ≡ B − b0. This inequality, which
may be of independent interest, is a two-observable exten-
sion of the Holevo inequality (14), and reduces
to it by choosing B̄ ¼ �iðA − a0Þ and recalling that
ðΔAþ ΔA0Þ2 ≥ ΔA2 þ ΔA02. To obtain (3), take the limit
jψ 0i → jψi. This can be calculated by writing
jψ 0i ¼ cosαjψi þ eiλ sinαjψ⊥i, where jψ⊥i is orthogonal
to jψi and taking the limit α → 0. The arbitrariness of jψ 0i
ensures the arbitrariness of jψ⊥i and of the phase λ. In the
limit, the last term of (18) yields the expectation value
of the commutator and the other term on the right-hand
side tends to ½Reðeiλhψ jð−A� iBÞjψ⊥iÞ�2. For either sign in
this expression, we can choose λ so that the term in
parenthesis is real, so that this expression can be written
also as jhψ jð−A� iBÞjψ⊥ij2. This implies that the limit
jψ 0i → jψi of (18) gives (3) (with the above choice of λ).
To prove the second proposed uncertainty relation (6),

we can choose cA ¼ ΔB0 and cB ¼ −ΔA in (17), which
then becomes
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ΔAΔB0 ≥� i
2
ðϵ�hψ jĀB̄0jψ 0i− ϵhψ 0jB̄0AjψiÞ

þ ΔAΔB0

4ð1− jhψ jψ 0ijÞ
�
Re

�
ϵ�hψ j Ā

ΔA
� i

B̄0

ΔB0 jψ 0i
��

2

: ð19Þ

We can now take the limit jψ 0i → jψi using the same
procedure described above. Again the first term tends to
the expectation value of the commutator, while the second
term tends to ΔAΔB½Reðe−iλhψ⊥jA=ΔA∓ iB=ΔBjψiÞ�2=2.
Again the phase λ can be chosen so that this last term is real
and (19) becomes

ΔAΔB ≥ � i
2
h½A;B�i þ ΔAΔB

2

����hψ⊥j A
ΔA

∓ i
B
ΔB

jψi
����
2

;

which is equivalent to (6).
Finally, the second proof of (4) is obtained by noting that

ðΔAþ ΔBÞ2 ≤ 2ðΔA2 þ ΔB2Þ. Therefore, we have

ΔA2 þ ΔB2 ≥
1

2
½ΔðAþ BÞ�2; ð20Þ

where we have used the sum uncertainty relation of [10],
namely, ΔAþ ΔB ≥ ΔðAþ BÞ with ½ΔðAþ BÞ�2 the vari-
ance of ðAþ BÞ in the state jψi. The meaning of the sum
uncertainty relation is that mixing different operators
always decreases the uncertainty. The lower bound in
(20) can be rewritten using Vaidman’s formula [16]

Ojψi ¼ hOijψi þ ΔOjψ⊥
Oi; ð21Þ

(the expectation value hOi and the variance ΔO2 of the
observable O are calculated on jψi), obtaining

ΔO¼ jhψ⊥
OjΔOjψ⊥

Oij ¼ jhψ⊥
OjðO− hOiÞjψij ¼ jhψ⊥

OjOjψij;

which, inserted into (20) with O ¼ ðAþ BÞ gives [10].
Using the results of [10] it is also easy to extend this
inequality to more than two observables.
Possible choices of jψ⊥i.—We now show that the

optimization over jψ⊥i of both inequalities (3) and (6)
makes them tight. Start with (3): the lower bound is clearly
maximized if we choose jψ⊥i as close as possible to the
state jχi ¼ ðA� iBÞjψi, for example, projecting such
state into the orthogonal subspace to jψi as jψ⊥i ¼
ð1 − jψihψ jÞjχi=N , with N a normalization. With this
choice, we find

hψ⊥jðA� iBÞjψi ¼ hψ j½A − a ∓ iðB − bÞ�
ðA� iBÞjψi=N ¼ ðΔA2 þ ΔB2 � ih½A;B�iÞ=N ; ð22Þ

where the normalization constant is N ¼ ðΔA2 þ ΔB2�
ih½A;B�iÞ1=2. Substituting (22) into (3), we see that
the inequality is indeed saturated. Analogous considera-
tions hold for (6): In this case, we should choose
jψ⊥i ∝ ð1 − jψihψ jÞð A

ΔA ∓ i B
ΔB jψi. With this choice,

hψ⊥jð A
ΔA ∓ i B

ΔB jψi ¼ 2 ∓ ih½A; B�i=ðΔAΔBÞ, which is
also equal to the square of the normalization constant
for jψ⊥i. Hence, substituting this value in (6), we see that it
is saturated for this choice of jψ⊥i. [It is also clear that the
choice of jψ⊥i that minimizes the lower bounds transforms
(3) into ΔA2 þ ΔB2 ≥ jh½A;B�ij that is a consequence of
(1) as shown above, and it transforms (6) into (1).]
A simple prescription for how to choose an expression

for jψ⊥i uses (21), namely, jψ⊥i ¼ ðO − hOiÞjψi=ΔO.
Here we have focused on extending the Heisenberg-

Robertson uncertainty relation (1), but it is also possible
to give an extension to the Schrödinger relation (2), by
choosing an arbitrary phase factor eiθ in place of the
imaginary constant i in (15).
Uncertainty relations and uncertainty principle.—

Recently, there has been an interesting and lively debate
on how to interpret the uncertainty principle [17,18]. To
elucidate the relation between these results and ours, we
introduce Peres’ nomenclature that distinguishes between
the uncertainty relation and the uncertainty principle [19].
The former refers solely to the preparation of the system
which induces a spread in the measurement outcomes,
and does not refer to the disturbance induced by the
measurement or to joint measurements [20]. The latter
entails also the measurement disturbance by the apparatus
and the impossibility of joint measurements of incompat-
ible observables. From Robertson’s derivation [3], it is clear
[19] that the Heisenberg-Robertson inequalities are uncer-
tainty relations (the ones typically taught in textbooks).
In contrast, Heisenberg, in his Letter [1,2], does not give a
clear distinction between the two concepts, and both can be
applied depending on the systems he analyzes there. The
recent literature [17,18] discusses the uncertainty principle:
measurement-induced disturbance and joint measurability.
Our result instead refers to uncertainty relations: it can be
seen as a quantitative expression for the nonexistence of
common eigenstates in incompatible observables.
Conclusions.—The Heisenberg-Robertson (1) or

Schrödinger (2) uncertainty relations do not fully capture
the incompatibility of observables on the system state. In this
Letter, we have presented a stronger uncertainty relation (5)
based on two lower bounds (3) and (4) for the sum of the
variances that are nontrivial if the two observables are
incompatible on the state of the system. We also derived
(6), a strengthening of the Heisenberg-Robertson uncer-
tainty relation (1). There exists alternate formulations of
uncertainty relations in terms of bounds on the sum of
entropic quantities [21,22], but our new relations capture the
notion of incompatibilty in terms of experimentally mea-
sured error bars, as they refer to variances.
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