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We investigate the slow dynamics of a simple glass former whose interaction potential is the sum of a
hard core and a square shoulder repulsion. According to mode coupling theory, the competition between
the two repulsive length scales gives rise to a complex dynamic scenario: besides the fluid-glass line,
the theory predicts a glass-glass line in the temperature-packing fraction plane with two end points.
Interestingly, for critical values of the square-shoulder parameters, such end points can be accessed from
the liquid phase. We verify, via extensive numerical simulations, the existence of both points through the
observation of an unconventional subdiffusive/logarithmic dynamical behavior. Unexpectedly, we also
discover that the simultaneous presence of two end points generates special loci in the state diagram along
which the dynamics is identical at all length and time scales.
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Colloidal solutions display a rich variety of dynamical
behavior. Experiments have shown that the addition of a
short-range attraction to the excluded volume interaction
generates multiple dynamically arrested (glassy) states,
explored by tuning the interaction strength, the packing
fraction, or the range of the attraction [1–6]. These
experimental studies agree with predictions based on the
mode coupling theory (MCT) [7–11] and numerical sim-
ulations [12–17]. Multiple glasses have been revealed in
several binary mixtures, including hard [18,19] and soft
spheres [20–22]. In star polymers, distinct glasses have
been found to surround a region of ergodic state points
[23,24]. In all these cases, different microscopic mecha-
nisms compete to generate multiple arrested states and
a complex dynamic behavior. Interestingly, logarithmic
relaxation has also been reported in solutions of globular
proteins [25,26] and in polymeric systems [27,28].
Recently, core-softened potentials with two repulsive

length scales have been identified as good candidates for
displaying novel glassy dynamics. These models have
been introduced to describe disparate systems such as
metallic glasses [29], granular materials [30], and pen-
etrable soft particles [31–35], as well as silica [36] and
water [37,38]. The square-shoulder (SS) model, i.e., a
model whose interaction potential is a hard-core repulsion
of extent σ complemented by a repulsive shoulder, belongs
to the family of core-softened potentials. For the SS
model, MCT calculations have predicted the existence
of multiple glass transitions [39]. For specific values of the
shoulder width Δ, the temperature T–packing fraction ϕ
state diagram is characterized by a nonmonotonic fluid-
glass transition line, retracing both upon cooling and upon
compression.

Differently from all previously investigated models
(both atomic and colloidal), the MCT predicts for the SS
system (for small enough Δ) a glass-glass line, completely
buried within the glass region and terminating with two end
points. Crossing such a glass-glass line, the system dis-
continuously jumps from one type of glass to another, in a
kinetic analogue of a first-order thermodynamic transition
[see Fig. 1(a)]. The two end points can be considered as
“critical points” beyond which the transition between the
two glasses becomes continuous. Borrowing the nomen-
clature of catastrophe theory [40], the MCT names such
end points A3 singularities. Upon increasing Δ, the glass-
glass line progressively moves towards the fluid-glass one
and the two lines eventually merge [Figs. 1(b) and 1(c)].
While this happens, each A3 point moves in the three-
dimensional control parameter space (ϕ, T, Δ), until it
coalesces with the fluid-glass line. The collision condition
defines a set of critical control parameters (ϕ�, T�, Δ�)
identifying a higher-order (A4) singularity. Such a singu-
larity is the only end point accessible from the fluid phase,
i.e., in equilibrium conditions. According to the MCT,
the SS model is characterized by two distinct A4 points
[Figs. 1(b) and 1(c)]. The dynamics close to singularities
(A3 and A4) differs from the standard fluid-glass scenario.
Instead of the characteristic two-step dynamics, the decay
of the density correlators shows a logarithmic dependence
on time t. Correspondingly, the mean-squared displacement
(MSD) shows a subdiffusive behavior, i.e., ∼ta with a < 1
[11]. Similar features have been observed also in theoretical
studies on facilitated models [41], supporting the robust-
ness of the MCT results.
In this Letter we provide numerical evidence of the

existence of two A4 singularities in the SS model, by
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observing the subdiffusive behavior of the MSD and the
logarithmic decay of the density correlators covering
several time decades. Additionally, we find a novel
dynamic behavior that occurs in the fluid region, generated
by the interplay of the two close-by end points. We discover
indeed that their simultaneous presence gives rise to special
loci in the T − ϕ plane along which the self and collective
dynamics is identical (isodynamics loci), i.e., where both
the short- and the long-time dynamics of the system
remarkably coincide at all length scales.
For our investigation we perform event-driven molecular

dynamics simulations of a 50∶50 noncrystallizing binary
mixture of N ¼ 2000 particles of species A and B interact-
ing via the pairwise SS potential

VijðrÞ ¼

8
><

>:

∞; r < σij

u0; σij ≤ r < ð1þ ΔÞσij
0; r ≥ ð1þ ΔÞσij;

ð1Þ

where i; j ¼ A;B, σij is the hard core between two
particles, Δ is the shoulder width, and u0 is the shoulder
height. The size ratio between the two species is
σAA=σBB ¼ 1.2 and σAB ¼ ðσAA þ σBBÞ=2. The mass of
particles is m ¼ 1. σBB and u0 are chosen as units of length
and energy, and the time t is measured in units of
t0 ¼ σBB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=kBT

p
. T is measured in units of energy

(kB ¼ 1). Simulations are performed in the canonical

and microcanonical ensemble for a wide range of T and
ϕ¼ðπ=6ÞðρAσ3AAþρBσ

3
BBÞ, where ρA ¼ ρB¼ ρ=2, ρ≡N=V

with V the volume of the cubic simulation box.
To locate the A4 singularities we carry out an extensive

study of the dynamics of the SS system. Building on the
previous study for Δ ¼ 0.15 [42], where a comparison
between simulations and theoretical predictions has pro-
vided an estimate of the A3 points, we restricted our search
of the two A4 points to values of Δ ≥ 0.17. Specifically, we
have analysed in depth the range 0.17 ≤ Δ ≤ 0.24, with a
mesh of 0.01. For eachΔwe have studied the dynamics in a
wide window of ϕ and T. Such a lengthy investigation has

allowed us to locate the first Að1Þ
4 singularity at the state

point (ϕ�ð1Þ ≃ 0.6, T�ð1Þ ≃ 0.55, Δ�ð1Þ ≃ 0.21) and the

second Að2Þ
4 at (ϕ�ð2Þ ≃ 0.4, T�ð2Þ ≃ 0.15, Δ�ð2Þ ≃ 0.24).

Details of this procedure, based on the mapping of the
MCT prediction onto the numerical data, are provided
in Ref. [43].
Figure 2 shows the dynamic behavior of the system close

to the two A4 singularities. In the case of Að1Þ
4 (top row

panels) we follow the evolution of dynamic quantities on

changing ϕ at Δ�ð1Þ and T�ð1Þ fixed, while for Að2Þ
4 (bottom

row panels) we work at fixedΔ�ð2Þ and ϕ�ð2Þ upon changing
T, following the paths highlighted in Figs. 1(b) and 1(c).
Figure 2(a) shows the increasing subdiffusive behavior of
the MSD for the A particles hδr2AAi on increasing ϕ, which
extends up to 3 orders of magnitude at ϕ ¼ 0.6. The B
particles behave likewise [inset of Fig. 2(a)]. We stress that
even at very high density we do not observe any hint of a
plateau in the MSD, a signature of the perfect balance
between the two length scales in the interaction potential
achieved close to an A4 singularity. The collective density
correlators ΦAA

q ðtÞ of the A particles display similarly
striking features. This is shown in Fig. 2(b), where the
correlators are reported for several wave vectors qσAA.
For a large time window the decay of ΦAA

q ðtÞ is well
described by a second degree polynomial in lnðtÞ, i.e.,
ΦAA

q ðtÞ ∼ fq −Hð1Þ
q lnðt=τÞ þHð2Þ

q lnðt=τÞ2, where fq,

Hð1Þ
q , Hð2Þ

q are fit parameters. For a special wave vector

q�ð1Þ, Hð2Þ
q ∼ 0 and the correlator displays a pure logarith-

mic decay. We find q�ð1ÞσAA ¼ 15.5. In addition, in the q-
vector region explored we observe the convex-to-concave
crossover predicted by the MCT [11]. The ϕ dependence
of ΦAA

q ðtÞ, reported in Fig. 2(c), shows the growth of the

logarithmic regime on approaching Að1Þ
4 .

The same analysis has been carried out for Að2Þ
4 . As

shown in Fig. 1(c), such a singularity lies close to the
reentrance, which makes it difficult to explore the region
around it by moving along constant T paths. In addition,
even along the constant ϕ path (i.e., by varying T)
the presence of a reentrant fluid-glass line (imposing its
two-step relaxation behavior) partially interferes with the
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FIG. 1 (color online). Schematic evolution of the MCT dy-
namic state diagram of the SS system for increasing values of the
shoulder width Δ. (a) For small Δ, beside the fluid-glass line
(solid line), a disconnected glass-glass line is predicted (dashed
line), ending in two A3 singularities (stars). (b) On increasing Δ,
the glass-glass line merges with the fluid-glass line and an A4

singularity appears when one of the two A3 points meets the fluid-
glass line (filled triangle). (c) At even larger Δ also the second A3

point eventually intersects the fluid-glass line generating a
distinct A4 singularity (filled triangle). The arrows in (b) and
(c) indicate the paths followed to locate the A4 singularities in the
simulations. The vertical dashed lines indicate the glass tran-
sitions at high and low densities: while the former happens at the

well-known hard sphere glass transition packing fraction ϕð1ÞHS
g ,

the latter takes place at ϕð2ÞHS
g ¼ ϕð1ÞHS

g =ð1þ ΔÞ3.
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logarithmic dynamics induced by the A4 point. As a result,
dynamical quantities in Figs. 2(d)–2(f) look different from

those obtained for the Að1Þ
4 . Figure 2(d) shows hδr2AAi as a

function of T for the A and B (inset) particles. In this case
the subdiffusive region is preceded by a plateau, a signature
of the standard caging effect imposed by the nearby liquid-
glass line. The subdiffusive region, the hallmark of the A4

singularity, is shifted to higher times and extends over
almost three decades. The interplay between the fluid-glass
line and the A4 dynamics is also observable in the decay of
ΦAA

q ðtÞ at (ϕ�ð2Þ, T�ð2Þ, Δ�ð2Þ) in Fig. 2(e). For all q vectors
the initial part of the structural relaxation displays the
typical two-step behavior, but, for longer times, the
decay becomes logarithmic. We find a pure logarithmic
behavior in ΦAA

q ðtÞ for q�ð2ÞσAA ¼ 13.6. The evolution of
ΦAA

q ðtÞ at q�ð2ÞσAA with T is shown in Fig. 2(f): the long-
time decay becomes more and more linear in lnðtÞ on

approaching Að2Þ
4 .

The procedure to locate the A4 singularities required the
investigation of a very large number of state points for
severalΔ values. During such a process, we have discovered
a peculiar dynamic feature of the SSmodel that we associate
with the simultaneous presence of two distinct end points
(A3 or A4 singularities). Specifically, we find that the
competition between these two special points generates
loci in the T − ϕ plane with invariant dynamics, that we
name isodynamics lines. To gain a deeper understanding of
such loci we investigate in detail the region in between two
A3 singularities forΔ ¼ 0.17, i.e., for the case schematically
shown in Fig. 1(a). We focus on isodiffusivity (iso-D=D0)
[14] paths close to the fluid-glass line (D0 ≡ σ2BB=t0
accounts for the trivial effect of the thermal velocity), as
shown in the inset of Fig. 3(a). Surprisingly, we find that
the state points along the iso-D=D0 curves are characterized
not only by the same long-time dynamics but also by the
same short- and intermediate-time dependence. Figures 3(a)
and 3(b) show, respectively, the MSD and ΦAA

q ðtÞ as a
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FIG. 2 (color online). Dynamical quantities close to the two singularities Að1Þ
4 ≡ ðϕ�ð1Þ ≃ 0.6; T�ð1Þ ≃ 0.55;Δ�ð1Þ ≃ 0.21Þ and

Að2Þ
4 ≡ ðϕ�ð2Þ ≃ 0.4; T�ð2Þ ≃ 0.15;Δ�ð2Þ ≃ 0.24Þ, along paths shown in Figs. 1(b) and 1(c), respectively. (a) A-particles MSD as a

function of the scaled time t0 for different ϕ at T�ð1Þ, Δ�ð1Þ. The dashed line is a power law (∝ t0.3) to highlight the subdiffusive regime.

The inset shows the MSD for the B species. (b) Collective density correlators of the A species ΦAA
q ðtÞ evaluated at Að1Þ

4 for different wave
vectors qσAA. The dotted vertical lines delimit the time window in which ΦAA

q ðtÞ display a logarithmic behavior. Dashed lines are fits
obtained by a second degree polynomial in lnðtÞ. (c) ΦAA

q ðtÞ at T�ð1Þ, Δ�ð1Þ as a function of ϕ. (d) MSD for A particles at ϕ�ð2Þ, Δ�ð2Þ as
function of the scaled time t0 for different T. The subdiffusive regime is characterized by a power-law ∝ t0.37. Inset: MSD of B particles.

(e) The same as (b) but evaluated at Að2Þ
4 . Despite the interference of the fluid-glass line on the dynamics (see text), a long-time

logarithmic behavior can be identified. (f) ΦAA
q�ð2Þ ðtÞ at ϕ�ð2Þ, Δ�ð2Þ as a function of T.
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function of t=t0, along three iso-D=D0 lines, differing by
more than 2 orders of magnitude inD=D0. For all three iso-
D=D0 sets, the superposition of the curves, at all times and at
all length scales, is striking, both in real and in Fourier space.
To further support the isodynamics behavior at all length
scales we show in Fig. 4(a) the wave-vector dependence of
ΦAA

q ðtÞ for a specific value ofD=D0. Again, superposition of
the correlation functions at all times is observed for all q
values. These results prove the existence of isodynamics
loci, i.e., lines in the T − ϕ plane where an identical
dynamics is observed. It is interesting to notice that while
the dynamics is identical, the structural and thermodynamic
properties are not, as discussed in Ref. [43]. Finally we
remark that only state points that feel the presence of both
singularities obey the invariance. Figure 4(b) shows that
the decay of ΦAA

q ðtÞ does not satisfy the invariance for
T and ϕ progressively moving closer to one singularity
(but always on the iso-D=D0 line). In this case, while the
long-time dynamics are identical (as one could expect on
the basis of the identical diffusion coefficient), the short-
and intermediate-time dynamics is now clearly different,

indicating that the system explores the nearest-neighbor
cages in a different way for each state point. The state points
where the isodynamics is or is not observed are indicated
in the inset of Fig. 4(b). In Ref. [43] we discuss how the
isodynamics behavior is compatible with MCT predictions.
In summary, we have reported numerical evidence of

the existence of two A4 singularities in a simple system
with two repulsive length scales. We have confirmed that
anomalous dynamical features, such as the logarithmic
decay of the density autocorrelation function and the
subdiffusive regime in the mean-square displacement,
characterize the dynamics close to these points. This result
provides (i) one of the most stringent tests of previously
formulated MCT predictions, and (ii) evidence that soft
colloids could constitute a model system for experimentally
testing this highly unconventional behavior. In addition,
we unexpectedly discovered that the competition between
two singularities gives rise to a nontrivial isodynamics in
between the two singularities. Such state points share the
same dynamics at all time and length scales. We hope our
study will stimulate the experimental search for anomalous
dynamics and competing glass transitions in core-softened
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FIG. 3 (color online). Dynamical properties for Δ ¼ 0.17
along three isodynamics lines with rescaled diffusivity D=D0 ¼
3.5 × 10−4 (orange symbols),D=D0 ¼ 5.5 × 10−5 (red symbols),
and D=D0 ¼ 9.8 × 10−6 (magenta symbols). (a) MSD of the A
species along the isodynamics lines as a function of t=t0.
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in (a) as a function of t=t0. The inset shows the position of the iso-
D=D0 lines and of the expected fluid-glass line [43].
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