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To measure chemical concentrations, cells need to extract information from stochastic receptor signals
via signaling networks which are also inherently stochastic. Here, we study how the accuracy of sensing
depends on the correlations between these extrinsic and intrinsic sources of noise. We find that the sensing
precision of signaling networks that are not driven out of equilibrium is fundamentally limited by the
fluctuation-dissipation theorem, which generates a tradeoff between the removal of extrinsic and intrinsic
noise. As a result, the sensing precision of equilibrium systems is limited by the number of receptors;
the downstream network can never improve sensing. To lift the tradeoff, energy dissipation is essential.
This allows the receptor to transduce the signal as a catalyst and enables time integration of the receptor
state. To beat the sensing limit of equilibrium systems, a canonical nonequilibrium signaling network based
on the push-pull motif needs to dissipate at least 1kBT per receptor.
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Living cells can measure chemical concentrations with
extraordinary precision [1–3], but how they do so remains
poorly understood [1–16]. Cells measure chemical con-
centrations via receptors on their surface. These measure-
ments are inevitably corrupted by noise that arises from
the stochastic arrival of ligand molecules by diffusion and
from the stochastic binding of the ligand to the receptor.
Cellular signaling networks have to remove this noise
extrinsic to the cell as much as possible. These networks,
however, are also stochastic in nature, which means
that they will also add noise to the transmitted signal.
Most studies on the accuracy of sensing have ignored
this intrinsic noise of the signaling network [1–10,12–
14,16,17]. They essentially assume that it can be made
arbitrarily small and that the extrinsic noise in the input
can be filtered with arbitrary precision by simply inte-
grating the receptor signal for longer. However, the
extrinsic and intrinsic noise are not generally independent
[18]. This raises the question how the accuracy of sensing
depends on the correlations between them.
Cell use both equilibrium and nonequilibrium motifs to

sense their environments (Fig. 1). Protein binding and
protein sequestration are equilibrium signaling motifs that
are omnipresent in signal transduction pathways; bacterial
one-component systems like ROCR provide well-studied
examples [19]. Many signaling pathways, including two-
component systems in bacteria [20] and mitogen-activated
protein kinase (MAPK) pathways in eukaryotes [21], are,
however, driven out of thermodynamic equilibrium by the
turnover of fuel, which leads to the dissipation of heat.
Here, we address the question what the sensing limits of
equilibrium sensing systems are, and how driving these
systems out of equilibrium can improve the precision of
sensing. We will show that the answer is intimately

connected to the correlations between extrinsic and intrin-
sic noise.
We start by studying sensing systems that are not driven

out of thermal equilibrium. We show how the sensing
precision in these systems is fundamentally bounded by
thermodynamic laws. This reveals a fundamental tradeoff
between the removal of extrinsic noise in the receptor signal
and the suppression of intrinsic noise in the processing
network: decreasing one noise source necessarily increases
the other. The reason is that in equilibrium systems, the
energy of ligand binding is used to change the state of the
downstream readout, which inevitably couples receptor-
ligand binding to receptor-readout binding (Fig. 1). As a
consequence, equilibrium systems can only reduce the
sensing error by increasing the number of receptors. In
these systems, adding downstream components can never
improve the precision of sensing.
To reduce the extrinsic and intrinsic noise simultane-

ously, the correlations between them need to be lifted.
To this end, energy and the receptor need to be employed

(a) (b)

FIG. 1 (color online). Different sensing strategies. (a) In equi-
librium systems, the energy of ligand binding is used to change the
state of the readout. Here, ligand binding drives readout unbinding:
it lowers the system’s free energy, overcoming the rise in free
energy due to readout unbinding. (b) In nonequilibrium systems,
like the Goldbeter-Koshland push-pull motif, fuel turnover drives
chemical modification of the readout, and the receptor catalyzes
the modification when ligand bound.
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differently (Fig. 1). Rather than using the energy of ligand
binding to change the state of the readout, the system
should use fuel. This makes it possible to change the state
of the readout via chemical modification, with the receptor
catalyzing the modification. Receptor-ligand binding and
receptor-readout binding are then uncoupled, and the
readout molecules provide a stable memory of the history
of the receptor state. This yields the mechanism of time
integration in which the extrinsic noise in the receptor state
and the intrinsic noise of the signaling network can be
reduced simultaneously.
We end by addressing the question how much non-

equilibrium sensing systems must be driven out of equi-
librium to sense more precisely than equilibrium systems.
We therefore study a network that combines both modes
of signal transmission. We show that dissipation only
improves the accuracy of sensing if more than about
1kBT is dissipated per receptor.
Consider a cell with RT receptor molecules on its surface

that independently bind ligand, Rþ L ⇌ RL. Downstream
of the receptor is an as yet unspecified network with a
readout species X. The question is how accurately the cell
can infer the ligand concentration c from the instantaneous
level x of X, by inverting the input-output relation x̄ðcÞ.
Linearizing x̄ðcÞ, and using error propagation, the cell’s
uncertainty about c is [4]:

�
δc
c

�
2

x
¼ 1

c2
σ2x�
dx̄
dc

�
2
¼ σ2x�

dx̄
dμL

�
2
; ð1Þ

where μL ¼ μ0 þ log c is the ligand’s chemical potential, in
units of kBT ¼ 1. The uncertainty is low if the average
readout level x̄ responds sensitively to changes in ligand
concentration, as measured by the gain dx̄=dc, but x is not
noisy, as measured by the variance σ2x.
If the receptor-ligand complex itself is taken as the

readout, then the error is
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4

RT
; ð2Þ

since both σ2RL and ðdR̄L=dμLÞ equal RTpð1 − pÞ, where p
is the probability a receptor is bound to ligand [22].
The sensing error is given by the error 1=½pð1 − pÞ� of a
single measurement divided by the number of receptors RT ,
because each receptor provides an independent measure-
ment. Clearly, the sensing error is limited by the total
number of receptors.
Cells can reduce the error in Eq. (2) with downstream

networks that time integrate the receptor state [1,4–11,
14,15,17]. This requires a memory of the past receptor
states. This memory can be implemented, e.g., by long-
lived molecular species [10]. Equilibrium systems can have
these, and we might thus expect that they can reduce the
sensing error past the bound set by the number of receptors.

Inspired by one component signaling networks [19],
we start by considering cytoplasmic readout molecules x
that directly bind ligand-free receptors [Fig. 1(a)]: Rþ
L ⇌ RL, Rþ x⇌

kf

kr
Rx. Solving the associated Langevin

equations shows that the dynamics of the output x around
its mean x̄ is given by the time-integrated fluctuations
δRLðtÞ in the receptor state plus noise ηðtÞ in the down-
stream network [22]:

δxðtÞ ¼
Z

t

−∞
dt0e−ðt−t0Þ=τI ½βδRLðt0Þ þ ηðt0Þ�; ð3Þ

where β ¼ kf x̄ and τI ¼ 1=½kfðx̄þ R̄Þ þ kr� is the integra-
tion time. The latter can be made arbitrarily large by
slowing down the readout dynamics, i.e., by lowering kf
and kr. This suggests that even equilibrium networks can
completely filter the extrinsic noise in the receptor states.
Indeed, we might assume that the intrinsic noise can be
suppressed by a suitable choice of the parameters, and that
equilibrium systems can thereby reduce the sensing error to
zero, just like nonequilibrium sensing systems [11,15].
This, however, is not the case, as we show next.
We can compute the variance σ2x ¼ hδxi2, either via the

linear-noise approximation [22] or directly from Eq. (3),
and plug the result together with the gain dx̄=dc into Eq. (1)
to find:

�
δc
c

�
2

¼ ðRþ RLÞ½ðRxÞðxÞ þ ðRþ RLÞðRxþ xÞ�
ðRLÞ2ðRxÞðxÞ : ð4Þ

With the sensing error in this form, one can verify that the
minimal sensing error is 4=RT , thus no better than Eq. (2).
Clearly, the error is never lower than the bound set by the
number of receptors, regardless of the integration time, the
readout copy number, or other network parameters.
This raises the paradox of a network that time integrates

the receptor fluctuations yet cannot reduce the sensing error
with it. The resolution of the paradox is that in this system
the intrinsic and extrinsic noise are correlated. To examine
this, we use Eq. (3) to decompose the variance of the output
σ2x ¼ hδxi2 into the sum of the extrinsic noise σ2ex;x ≡
β2KδRL;δRL and the intrinsic noise σ2in;x ≡ βKδRL;η þ Kη;η,

where KA;B ¼ R
t
−∞

R
t
−∞ e−ðt−t1 0Þ=τICA;Bðt10; t20Þe−ðt−t2 0Þ=τIdt1

dt2 with the correlation function CABðt1; t2Þ ¼ hAðt1Þ
Bðt2Þi. This decomposition is not unique, because we
could have assigned the coupling term βKδRL;η to the
extrinsic noise term instead of to the intrinsic noise one.
In the form above, however, the extrinsic noise term
features a canonical temporal average of the input (recep-
tor) fluctuations [18,28,29]. In this form, the extrinsic
noise term can be made arbitrarily small by increasing
the integration time τI [see Fig. S(1)]. Importantly, how-
ever, we find that when decreasing the extrinsic noise
σ2ex;x would reduce the sensing error ðδc=cÞ2 [given by
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σ2x ¼ σ2ex;x þ σ2in;x divided by the gain squared, see Eq. (1)]
below 4=RT, then the intrinsic noise σ2in;x increases by at
least the same amount [see Fig. S(2)]. No matter which
parameter is varied, and no matter how the total noise σ2x is
decomposed into an extrinsic noise term and an intrinsic
noise one, the sensing error never falls below 4=RT. The
physical origin is that in equilibrium systems receptor-
ligand binding and receptor-readout binding are coupled.
As we elucidate below and in [22], in these systems, a
change in the state of the readout necessarily affects the
input RLðtÞ. As a result, the intrinsic fluctuations in the
activation and deactivation of the readout, modeled by ηðtÞ,
become correlated with the extrinsic fluctuations in the
input RLðtÞ: KδRL;η ≠ 0. It is this cross-correlation, origi-
nating from the coupling between receptor-readout binding
and receptor-ligand binding, that leads to a fundamental
tradeoff between the removal of extrinsic and intrinsic
noise in equilibrium systems.
Signaling networks are usually far more complicated

than a single readout molecule that binds the receptor, and it
has been shown that additional network layers can reduce
the sensing error [10]. This raises the question whether a
more complicated equilibrium network can overcome the
limit set by the number of receptors. Searching over all
possible network topologies to systematically address this
question is difficult, if not impossible. However, equilib-
rium systems are fundamentally bounded by the laws of
equilibrium thermodynamics, regardless of their topology.
One such law is the fluctuation-dissipation theorem.
Specifically, for any readout x in an equilibrium system,

the fluctuation-dissipation theorem states that the gain
dx̄=dμL is equal to the covariance σ2x;RL of the fluctuations
in the readout and the ligand-bound receptor RL, since RL
(or a complex containing it) is the species conjugate to μL
[30]. Then, for any readout x, [Eq. (1)]:

�
δc
c

�
2

x
¼ σ2x

ðdx̄=dμLÞ2
¼ σ2x

ðσ2x;RLÞ2
: ð5Þ

To see that this is always bounded by the number of
receptors, note that if the receptors themselves are taken
as the readout, the sensing error is ðδc=cÞ2RL ¼ 1=σ2RL. By
combining this expression with the expression for ðδc=cÞ2x,
it follows that no readout is better for sensing than the
receptors:

�
δc
c

�
2

x
¼ σ2xσ

2
RL

ðσ2x;RLÞ2
�
δc
c

�
2

RL
≥
�
δc
c

�
2

RL
; ð6Þ

since jσ2x;RLj=
ffiffiffiffiffiffiffiffiffiffiffiffi
σ2xσ

2
RL

p
is a correlation coefficient, and so is

always less than 1 in magnitude. A downstream signaling
network can never improve the accuracy of sensing.
This relation leads to quantitative bounds on the sensing

capacity of equilibrium networks. In general, the variance

σ2RL, and hence ðδc=cÞ2RL, depends on the particular net-
work, since downstream molecules can affect σ2RL by
binding the receptor. However, the variance of any random
variable 0 ≤ Y ≤ a is σ2Y ≤ a2=4. Thus, for any network,
σ2RL ≤ R2

T=4 since 0 ≤ RL ≤ RT . Then, for equilibrium
systems, the fundamental lower bound on the fractional
error in the concentration estimate is:

�
δc
c

�
2

x
≥

4

R2
T
: ð7Þ

This proves that in equilibrium systems, the sensing
precision is fundamentally limited by the number of
receptors.
Interestingly, for all equilibrium networks in which the

receptors bind the ligand noncooperatively, σ2RL ≤ RT [22].
Hence, for all noncooperative equilibrium networks,
including the special case of Eq. (2), we have

�
δc
c

�
2

x
≥

1

RT
: ð8Þ

This bound for noncooperative equilibrium networks is
typically (i.e., when RT ≥ 4) worse than the fundamental
bound for all equilibrium networks, given by Eq. (7). This
shows that cooperative ligand binding is necessary for
reaching the latter bound. In [22], we show that the
cooperative binding of ligand to receptor clusters makes
it indeed possible to beat the noncooperative bound of
Eq. (8) in equilibrium systems. Whether these cooperative
systems can actually reach the fundamental bound for all
equilibrium sensing systems [Eq. (7)] remains, however, an
open question [22]. Lastly, our observation that cooperative
binding can lower the bound of equilibrium systems is in
contrast to the observation of Skoge et al. that cooperative
interactions between neighboring receptors cannot improve
sensing in nonequilibrium sensing systems [13] (see [22]
for a detailed discussion).
The different species in a network can also be viewed as

nodes through which information about the ligand flows.
The data processing inequality [31] guarantees for any
network that no readout can have more information about
the ligand concentration encoded in its time trace than
the receptor has in its time trace: I(x½0;T�ðtÞ; μL) ≤
I(RL½0;T�ðtÞ; μL), where I is the mutual information
between the arguments and x½0;T�ðtÞ indicates the time
trace of x from time 0 to time T. For equilibrium networks,
we can show that the data processing inequality guarantees
a stronger result [22]: no readout has more information
about the ligand than the receptors at any given time:
I(xðTÞ; μL) ≤ I(RLðTÞ; μL) ≤ log2ðRT þ 1Þ, and there-
fore, the information in the instantaneous level of the
readout is bounded by the number of receptors. This
statement is the information-theoretic analogue of Eqs. (6)
and (7). The history of receptor states does contain more
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information about the ligand concentration than the instanta-
neous receptor state, but our results show that an equilibrium
signaling network cannot exploit this: its output contains
only as much information as the instantaneous receptor state;
it does not encode the history of receptor states in any
informative way, whether by time integration or any other
method.
The tradeoffs faced by equilibrium networks are man-

ifestations of their time reversibility [32]. Time-reversible
systems have symmetry between their past and future:
if they integrate the past [as in Eq. (3)], they must also
integrate and hence, perturb the future; here, readout
binding to the receptor will affect future ligand binding.
Concomitantly, in a time reversible system, there is no
sense of “upstream” and “downstream”, concepts which
rely on a direction of time [32]. Although we have referred
to the molecule x as a “readout” of the ligand concentration,
the ligand is just as much a readout of x. In an equilibrium
system, the sensing error, like any static quantity, can only
depend on ratios of time scales (i.e., the equilibrium
constants), which is another way of seeing that increasing
the “integration time” cannot improve sensing.
While equilibrium systems can only increase the number

of concentration measurements by increasing the number
of receptors, nonequilibrium systems can also raise the
number of measurements by increasing the number of
measurements per receptor. These different restrictions
ultimately arise from how the two systems employ recep-
tors and energy for signaling.
Equilibrium systems sense by harvesting the energy of

ligand binding, capitalizing on the chemical work that is
done in the environment to change the ligand concen-
tration. This energy is used to propagate the signal through
the downstream network; in the simple system studied here,
for example, the energy of ligand binding is used to drive
the readout molecule from the receptor. However, detailed
balance then dictates that the receptor-readout binding
also influences receptor-ligand binding, thus perturbing
the signal and creating correlations between intrinsic and
extrinsic noise.
Energy dissipation—fuel turnover—is needed to break the

tradeoff between extrinsic and intrinsic noise. While in
equilibrium systems, the stability of the downstream signal-
ing proteins relies on physical interactions with the receptor
molecules, in nonequilibrium systems, the energy to change
their state is provided by the chemical fuel [Fig. 1(b)]. The
receptor catalyzes the chemical modification of the readout,
but after modification, the receptor and readout become
decoupled, and each readout molecule provides a stable
memory of the receptor state when it was modified. It is this
feature that allows these nonequilibrium systems to time
integrate the receptor state without increasing the intrinsic
noise, and to increase the number of concentration mea-
surements per receptor. Indeed, in these systems, the sensing
error is no longer limited by the number of receptors [11,15].

However, nonequilibrium sensing not only requires time
to integrate the receptor state [1], but also downstream
readout molecules to store the history of the receptor states
[15], and energy to store these states reliably [11,15].
This raises the question which sensing strategy can sense
more accurately, given these cellular resources. In [15], we
show that the sensing error of the canonical, nonequili-
brium motif of Fig. 1(b) is bounded by�

δc
c

�
2

≥ MAX

�
4

RTð1þ τr=τcÞ
;
4

XT
;
4

w

�
; ð9Þ

where XT is the number of readout molecules; τc is the
correlation time of the receptor signal; τr is the relaxation
time of the network, which sets the integration time; and w
is the energy dissipated during the integration time.
Comparing the above expression with that for equilibrium
systems without cooperative binding [Eq. (8)] suggests that
this nonequilibrium system can sense more accurately than
equilibrium systems only when there is at least one readout
molecule per receptor, and when the amount of energy
dissipated during the integration time is at least 1kBT per
receptor.
To test this, we have considered a network that combines

both sensing strategies (Fig. 2). Numerically optimizing
the sensing error over all parameters shows that when the
energyperreceptor,w=RT , is lessthanafewkBT, theoptimized
systememploysparameters that correspond to theequilibrium
strategy of sequestration, while if w=RT is higher, it uses

FIG. 2 (color online). The different resource requirements for
equilibrium and nonequilibrium sensing lead to a tradeoff
between these two modes. The tradeoff is illustrated for a
network that combines both modes: RLþ x ⇌ RLx, RLx ⇌
RLþ x�, x� ⇌ x. The blue dots show the sensing error for
different parameter values [22]. The solid red lines show,
respectively, the predictions of Eqs. (2) and (9), while the dashed
red line shows the minimum sensing error obtained from the
numerical optimization. When the energy per receptor w=RT is
less than a few kBT, the optimized system employs the equilib-
rium strategy, with bound 4=RT , while if it is higher, it uses the
nonequilibrium strategy, achieving the bound 4=w.
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parameters corresponding to the nonequilibrium strategy of
catalysis to transmit the signal (Fig. 2), in accordancewith the
prediction based on Eqs. (2) and (9).
One-and two-component signaling networks provide a

case study for the tradeoff between equilibrium and non-
equilibrium sensing. One-component systems consist of
adaptor proteins which can bind an upstream ligand and a
downstream effector, while two-component systems are
similar to the push-pull network studied here, consisting
of a kinase (receptor) and its substrate. Interestingly, some
adaptor proteins, like RocR, contain the same ligand-bind-
ing domain as the kinase and the same effector-binding
domain as the substrate of a two-component system, i.e.,
NtrB-NtrC [19]. It has been suggested that one-component
systems have evolved into two-component systems to
facilitate transfer of signals from the membrane to the
nucleus [19]. However, our analysis reveals that equilibrium
networks can also transmit signals across space. Indeed, our
results suggest that equilibrium and nonequilibrium sensing
motifs are alternative signaling strategies, selected because
of different resource selection pressures. It is tempting to
speculate that when sensing precision is critical, but space
for receptors on the membrane is limiting, nonequilibrium
sensing becomes essential, because it makes it possible to
take more concentration measurements per receptor.
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