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We investigate the far-from-equilibrium nature of magnetic anisotropy and exchange interactions
between molecular magnets embedded in a tunnel junction. By mapping to an effective spin model, these
magnetic interactions can be divided into three types: isotropic Heisenberg, anisotropic Ising, and
anisotropic Dzyaloshinski-Moriya contributions, which are attributed to the background nonequilibrium
electronic structures. We further demonstrate that both the magnetic self- and exchange interactions can
be controlled either electrically by gating and tuning the voltage bias, or thermally by adjusting
the temperature bias. We show that the Heisenberg and Ising interactions scale linearly, while the
Dzyaloshinski-Moriya interaction scales quadratically, with the molecule-lead coupling strength. The
interactions scale linearly with the effective spin polarizations of the leads and the molecular coherence.
Our results pave a way for smart control of magnetic exchange interactions at atomic and molecular levels.
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Magnetic interactions are a field of continuously intense
activities addressing questions ranging from fundamental
physics to technological applications. While control of
magnetic interactions is straightforward using a magnetic
field, control by means of an electric field presently is an
emerging technique. Technological advances such as mag-
netic memories, magnetic logic gates, and quantum com-
putation, can be envisioned once current controlled
magnetic logic circuits have been achieved.

On the one hand, as the technological advances are
striving towards the atomic and molecular scale, experiments
on magnetic atoms adsorbed onto different surface materials
have demonstrated anisotropic effects on spin excitations
[1-4], anisotropic Ruderman-Kittel-Kasuya-Yosida (RKKY)
interaction [5], entanglement of spin excitations and Kondo
effect [6-8], and formation of stable magnetic configurations
[9-11]. Molecular magnets have also been realized in
various molecular complexes comprising transition metal
atoms [6,12-16], single molecular magnets [17,18], and
antiferromagnetic rings [19-25]. These experimental
advances open new alternatives to design multifunctional-
ities of nanoscale devices [21,26-30].

On the other hand, the theoretical understanding of
magnetic interactions at the nanoscale develops at a fast
pace. Recent theoretical advances include phenomenological
and microscopic descriptions of spin dynamics [31,32],
nonequilibrium formulation of RKKY interaction [33],
detailed analysis of exchange interactions in noncollinear
magnetic materials [34], and magnetic anisotropy in quan-
tum spintronics [35]. However, a comprehensive fundamen-
tal understanding of the microscopic mechanism of magnetic
interactions is still lacking, which hinders us from more
flexible control of spin dynamics at the nanoscale.
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Here, we uncover the far-from-equilibrium nature of
magnetic interactions between molecular magnets embedded
between metallic leads. We find that magnetic self- and
exchange interactions, which are effectively mediated by the
electron flow in the system, can be partitioned into isotropic
Heisenberg, anisotropic Ising, and Dzyaloshinski-Moriya
(DM) interactions. The first two interactions scale linearly
with the strength of the coupling to the leads while the DM
interaction scales quadratically. The interactions, moreover,
scale linearly with the effective spin polarizations of the
leads and the molecular coherence. We demonstrate that both
the magnitude and the character of the interaction, i.e.,
ferromagnetic or antiferromagnetic, can be controlled electri-
cally by gating and tuning voltage bias, and thermally, by
adjusting temperature bias between the leads. Our results for
the self-interactions reproduce and generalize the results for
magnetic anisotropy discussed in Ref. [35]; hence, our focus
in this Letter is on the exchange interactions.

We model the magnetic molecule n by a spin moment S,,,
which is coupled to a single level ¢,,, via exchange H;,, =
S, 0,8, - Sy, see Fig. 1. Here, s, = 3., ChoGp Cpor /2 TED-
resents the delocalized electron spin, where Cho (c,e) denote
the electron creation (annihilation) in the single level of the
nth molecule, whereas v,, is the coupling strength, and 6 is the
vector of Pauli matrices. The molecular complex is represented
by Hy = Zno’[gn(rcjwc;m + Tc(cjlo'anrlG + HC)] + Hine
where 7 . denotes the tunneling rate between adjacent mol-
ecules [36]. The molecules are coupled to the electrodes with
therate 7,y = L, R, where L(R) denotes the left (right) lead.
The leads are specified by their respective chemical potential
#,, and temperature 7', and we consider constant voltage and
thermal bias. The full systemis represented by the Hamiltonian
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FIG. 1 (color online). Sketch of magnetic molecules embedded
in a junction between magnetic leads. Electrons may tunnel
between the electrodes and the localized levels ¢,, and between
the levels. An electron residing in level n interacts with the
localized spin moment §,. The setup may be achieved by, e.g.,
stacking molecules on top of each other on a surface or
constructing a chain on an insulating surface, using scanning
tunneling microscopy techniques.

Here, H, = "y, (€xo— ,u)()c};(;cka represents the Hamiltonian

for the lead y, where CL: (cke) creates (annihilates) an electron
in a lead with energy ¢y,, momentum K, and spin ¢ = 1, |,
and we shall use k = p(q) for the left (right) lead. The
tunneling Hamiltonian Hy ="H7, +Hypg, where Hyp =

T szgczwcla + H.c., and analogously for the right inter-

action, assuming that the spin is conserved in the tunneling
process. The model we use pertains to, e.g., paramagnetic
M-phthalocyanine (MPc) and M-porphyrine molecules
[6,12,37], where M denotes a transition metal element (Cu,
Fe, Ni, Co, Mn), and similar structures where the magnetic
moment is carried by the transition metal  orbitals which are
weakly interacting with the delocalized s and p orbitals that
carry the charge conduction.

The local interactions between the spin moment S, and
electrons in level ¢,, give rise to a contribution 6§ to
effective spin action Sqg [32,38,39], given by

35 =13 [lendm(t.0) +S0(0) - (1.1
-S,(7)dr' dt. (2)

The contribution €,,j,,, = ie€,,J,0(t — t’)([sﬁ,?) (1),s,(1)])
provides the magnetic field exerted on the local spin moment

due to electron flow. Here, €,, = diag{e,,¢,,, } and s —

S oGO Cngt /2 = 3y CiaCing /2 is the charge, where 6°

is the identity matrix. The current J,, = iev,,v,0(t —
){[s,n(2),s,(¢')]) carries the magnetic anisotropy and
exchange interactions between the local magnetic moments
S, As the first contribution in Eq. (2) was discussed in [35],
our primary focus will be on the second.

The self-interaction J,,, defines the anisotropy field
acting on the local spin moment S,,, while J,,, mediate the
exchange interaction between two different spin moment
S,, and S,,. For small coupling v,,, we can neglect the
backaction from the localized spins on the electrons. In the
stationary regime, we can therefore express the current J,,,,,
in energy space as

e 1 - o
J]mn (a)) = Z UinUn / w—e+ € +id Spo-(Gmn (S)GGnm ('gl)
de de'
> < ([
- gede 3
Gnm (8)6Gnm(8 )) 2” 27[ ( )

Here, G,y is the lesser or greater (spin space matrix)
Green function (GF) for propagation of an electron from
molecule n to m. sp is the spin space trace and the products
sp[6G,,.|[6G,,,] are dyads defined as ab = a,»bjij such
that J,,, constitutes a tensorial quantity.

The electron GF G,,, can always be partitioned into

charge and magnetic components, gﬁ,?), and gfé}, according

to G, = gﬁ,?,zao + gfnl,), -6. In terms of this notion, it is
straightforward to see that the localized molecular spins in
Eq. (1) can be mapped into an effective Hamiltonian Hg
corresponding to the interaction f S, Do - Spdidt [ e.

This effective spin interaction model can be written as
HS = Zsm : (Jmnsn + Imn : Sn + Dmn X Sn) ’ (4)

where the three contributions in the above model describe
Heisenberg, Ising, and DM interactions, respectively, given
by the @ — 0 limit of the integrals

_ 1 O)</ .\ (0>,
Jmn(w) = ) Umvnf w—¢+ ; |:gmn (g)gnm (5 )
— g () g0 (&) — g™ (e) - gl (¢)
de de'
g (e) - gl (e’)} aeae (5a)
2 2x
1 1 </ N>
Imn(a)) D) Umvnfw et e [gmn (g)gnm (5)
— g (e)gn (¢) + g (¢)gm (€)
— gl (g (o) de de sh
gum (€')gmn (€) PGy (5b)
1
Dmn (a)) - Z Umvnf |:gl(7%< (8 + w)g512> <£>
— g (e + @)gin "~ (€) — g~ (e + @)gun (€)
d
+ g e+ @)gn(0)] 5 (5¢)

where f denotes the Cauchy principal value. Negative
(positive) parameters J,,,, I,,,, and D,,, correspond to
ferromagnetic (antiferromagnetic) interactions.

We notice here, for instance, that the Heisenberg-like
interaction is finite regardless of the spin polarization in the
molecules, while the Ising- and DM-like interactions are
finite only under spin polarized conditions. It may also be
noticed that the Ising-like interaction contributes to the
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uniaxial anisotropy [40], whereas the DM-like interaction
provides a transverse anisotropy component.

The expressions for the Heisenberg, Ising, and DM self-
and exchange interactions given in Eq. (5) constitute a very
general result since they provide the spin interactions far
from equilibrium, as well as in equilibrium, both under
electric and thermal fields. The expressions can, moreover,
be employed in materials calculations by interpreting the
GFs G,,, in terms of real space distributions of the
electronic structure. In the present context, we shall go
deeper into a discussion of their properties in coupled
magnetic molecules.

Under equilibrium conditions (vanishing voltage and
thermal biases), we can employ the fluctuation-dissipation

theorem through the relation Gy () = (£i)f(tw)
[-2ImG},, ()], where f(w) is the Fermi-Dirac distribution
function at the (electro- ) chemical potential . We define

gmn > G no/2 and gm,, =12 ,0:G /2, for a sim-
ple collinear spin polarized structure. Inserting into Eq. (5a)
and using the Kramers-Kronig relations, we obtain
Jiin = 00,003, [ £()Glng(£)Gls (€)de/4n,  which
is in agreement with previous results [41-43].

Under nonequilibrium conditions, we use the general
relation G</> (@) = G’ (0)Z~/> (0)G*(w), where the self-
energy X</~ is given by the couplings I’s. Reducing the
setup to a molecular dimer and neglecting the backaction
from the localized spins, we can write the GF

A{F - l.]/ﬁ/Z)UZ
o —Eg

G5 (o)

1 Z QO.GO + ZSTCUX + S(

29‘7 s==+1

(6)

Here, E,, = (&, + &, T Q,
irs/2)* +4T2%, A, =¢e,— &y I,= ZXF{;, and
Vo =Tt —TR The resonance E,, (E,.) signifies the
orbital with the highest (lowest) energy, and I% =
27:21(6){7)2(,0{(” denotes the coupling to the lead y =
L,R, in terms of the density of electron states (DOS)
Pk, The spin polarization in the leads is parametrized
within a Stoner picture using p, € [-1,1] and T% =
I*(1 + 0%,p,)/2 such that T¥ = 3" T, and T = T*.

For the transparency of mathematical formulation, we
assume equivalent molecules such that ¢,;, = ¢, and
symmetric couplings I’ = I',/2, retaining spin polariza-
tion in the leads. The Heisenberg exchange J,,, (m # n)
then becomes

e) + fr(e)

o = =0 L
" ot flﬁ— E,.[’le - E,

)(8—80) - T7 - (T5/4)

| _E0+| |8_ 6—|2

- lra/z)/z’ szr = (AO'_

| 2

X (e — & de. (7)

We notice that the Heisenberg exchange depends on the
electronic occupations (x f; + f) of the leads and scales
linearly with I". The expression, moreover, indicates that
there is a finite exchange interaction between the localized
spins whenever the chemical potential y, lies within the
energy range of the molecular orbitals, that is,
(u, — €0)* < T*+ (I,/4)%. This result is demonstrated
in Fig. 2(a), which shows the equilibrium exchange as
function of y, = u for different spin polarizations p; and
pr- The exchange, which peaks at the orbital resonances
E,., is antiferromagnetic below E,_ (above E,,) and
ferromagnetic between the resonances, which is a typical
behavior for superexchange. This behavior can be con-
trolled by means of gating or tuning voltage bias, see
Fig. 2(b), where the system is gated (u—¢&y = —2)
and driven with a finite voltage bias. Experimental values
of antiferromagnetic (Heisenberg) exchange between, e.g.,
MPc have been reported in the range between 0.5—20 meV
[6,37], and our results are well within this regime for
realistic parameters of the model.

From Figs. 2(a) and 2(b), it is clear that the equilibrium
and nonequilibrium responses on the spin polarization in
the leads are quite different. While the exchange depends
only weakly on (p;, pg) in equilibrium, the ferromagnetic
regimes change dramatically under nonequilibrium con-
ditions. Current flowing from stronger to weaker spin
polarization generates a stronger ferromagnetic exchange
while it becomes weaker when the current flows in the
opposite direction.

Varying the temperature and/or introducing a thermal
bias AT = T — T provides an alternative route to control
the exchange. The thermal broadening of the electronic
density in the leads effectively makes it (partially) resonant
with the molecular orbitals. The plots in Fig. 2(c) shows the
dependence on a thermal bias for different (p;, pg). The
initial peak is related to the fact that the lower orbital,
cf. Figs. 2(a) and 2(b), becomes resonant with the thermally
broadened electrons in the right lead. With increasing AT,

Pr=0
pr=0.8

PL
p=08

— 04

— 0
-0.4

-0.8

o W o ©

J12 (meV)

-6

p=-2 meV
5 15 25
AT (K)

FIG. 2 (color online). Heisenberg exchange J;, as function of
(a) chemical potential y, (b) bias voltage V, and (c) temperature
difference AT = Ty — T;. The plots in (a) and (b) are offset for
clarity, the system is gated (u = —2 meV) in (b), (c), while the
colors refer to different spin polarizations (p;, pg) in the leads.
The inset in (a) shows the electronically induced anisotropy fields
Ji(2) acting on the individual spins. Here, &y =0, 7, = 3" =
v/5=v/5=1meV,and T, =1 K.
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FIG. 3 (color online). Ising exchange /;,. The system is gated
(u = =2 meV) in (b), (c), while other parameters are as in Fig. 2.

more of the molecular electron density contributes to the
process, balancing ferromagnetic and antiferromagnetic
exchanges, which results in a decreased total exchange
interaction. The plots in Fig. 2(c) shows that we can control
this balance into a regime of ferromagnetic exchange for a
finite range of temperature biases by tuning the degree of
spin polarization in the leads.

Although previous studies have uncovered that the sign
of Heisenberg exchange interaction among magnetic impu-
rities can be tuned electrically (see, e.g., [44.45]), to our
knowledge, this thermal control of the Heisenberg
exchange has never been explored before. More impor-
tantly, our general results Eqs. (4)—(5) provide a unified
microscopic theory for both the electrical and thermal
control of magnetic interactions including also anisotropic
interactions, as we discuss below.

Under the same conditions as above, we write the Ising
exchange 1,,, = [,,,ZZ (m # n), where

T: fL(e) + Fr(e)
Imn = —4—;vmvn26§60§/ﬂlra L R\E
o0

‘8_ 6+| |£_ O’—|2
(e—e)* =T (Ty/4)7
|8_E0"+|2|€_E0’—|2

The basic difference compared to the Heisenberg exchange
is that the Ising exchange requires a nonvanishing spin
polarization in the system to be finite. Effectively, the Ising
energy becomes a measure of the spin polarization in the
system, which is indicated by the presence of the z
component of the Pauli matrices in Eq. (8). Therefore,
the Ising energy is small everywhere except when the
molecular orbitals are resonant with the chemical potential
(s) of the lead(s), see Fig. 3. In a similar way as with the
Heisenberg energy, we can tune the sign of the Ising
exchange by means of gating, voltage bias, thermal bias,
and spin polarization.

Finally, the DM exchange energy D,,,, = D,,,Z (m # n)
within the same approximation but with independent p;
and pp, is obtained as

X (e — &) de. (8)

Dmn:_%vmvnT%a—‘Ier FLFR)f(fL() fR(g))

(e—g)*

“le=Ey Ple—Ey_Ple—E,. Ple—E, |

de.  (9)
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FIG. 4 (color online). DM exchange D,. The system is biased
(V=0.1 mV) in (a) and gated (4 = —2 meV) in (b), (c), while
other parameters are as in Fig. 2.

The integrand peaks at the resonances E,; while the sign of
D,,, is governed by the polarities of the voltage bias
and temperature difference, and the spin polarization in the
leads. It shows that the DM energy results from the
breaking of time-reversal symmetry (spin polarized current
between the localized spins) and space inversion symmetry
(biased by a source-drain voltage and/or temperature
difference), see Fig. 4. The scaling with I'> suggests that
the influence of D,,, on the spin excitation spectrum
becomes important for stronger coupling I'. The combina-
tion F%F’f Fil"’;, which corresponds to an effective spin-

orbit coupling between the leads, suggests that D, is
maximal for antiferromagnetic alignment.
For small voltage bias and zero temperature difference,

fr(e) = fr(e) ~eV(B/4)cosh (e — u)/2],
which indicates a linear voltage bias dependence of D,,,
near equilibrium, as is shown in Fig. 4(b). In case of small
temperature difference AT = T — T and vanishing volt-
age bias, we have f(e)— fr(e)~—(AT/T)(p/4)(e—
p)cosh™2[f(e — u)/2], indicating a linear dependence on
the temperature difference, see Fig. 4(c).

The conclusions from the present study of the electrically
and thermally mediated exchange interactions between
localized magnetic moments have an impact on the
magnetic properties of magnetically active quantum devi-
ces designed with atomic or molecular building blocks.
Depending not only on the couplings to the leads and the
spin polarization in the system but also on gating, voltage
bias, and effective temperature difference between the
leads, the expected magnetic properties may be drastically
different. We expect that our findings should be verifiable
by existing state-of-the-art experiments. We believe that the
presented results provide essential new understanding to
magnetic interactions and the ability for control by means
of external electric and thermal sources.
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