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Oscillations and noise are ubiquitous in physical and biological systems. When oscillations arise from a
deterministic limit cycle, entrainment and synchronization may be analyzed in terms of the asymptotic
phase function. In the presence of noise, the asymptotic phase is no longer well defined. We introduce a
new definition of asymptotic phase in terms of the slowest decaying modes of the Kolmogorov backward
operator. Our stochastic asymptotic phase is well defined for noisy oscillators, even when the oscillations
are noise dependent. It reduces to the classical asymptotic phase in the limit of vanishing noise. The phase
can be obtained either by solving an eigenvalue problem, or by empirical observation of an oscillating
density’s approach to its steady state.

DOI: 10.1103/PhysRevLett.113.254101 PACS numbers: 05.45.-a, 05.10.Ln, 87.18.Tt, 87.19.ln

Introduction.—Limit cycles (LCs) appear in deter-
ministic models of nonlinear oscillators such as spiking
nerve cells [1], central pattern generators [2], and non-
linear circuits [3]. The reduction of LC systems to one-
dimensional “phase” variables is an indispensable tool
for understanding entrainment and synchronization of
weakly coupled oscillators [4,5]. Within the deterministic
framework, all initial points converge to the LC, on which
we can define a phase that progresses at a constant rate
(_θ ¼ ωLC ¼ 2π=TLC). The phase θðx0Þ of any point x0

is then defined by the asymptotic convergence of the
trajectory to that phase on the LC. However, stochastic
oscillations are ubiquitous, for example in biological
systems [6], and in this setting the classical definition of
the phase breaks down. For a noisy dynamics, all initial
densities will converge to the same stationary density. Thus
the large-t asymptotic behavior no longer disambiguates
initial conditions, and the classical asymptotic phase is not
well defined.
Schwabedal and Pikovsky attacked this problem by

defining the phase for a stochastic oscillator in terms of
the mean first passage times (MFPTs) between surfaces
analogous to the isochrons [level curves of the phase
function θðxÞ] of deterministic LCs [7–9]. Here we for-
mulate an alternative definition that is tied directly to the
asymptotic behavior of the density, rather than the first
passage time, and is grounded in the analysis of the forward
and backward operators governing the evolution of system
densities. Our operator approach leads to two distinct
notions of “phase” for stochastic systems. As we argue
below, the phase associated with the backward or adjoint
operator is closely related to the classical asymptotic phase.

General framework.—Consider the conditional density
ρðy; tjx; sÞ, for times t > s, evolving according to the
forward and backward equations

∂
∂t ρðy; tjx; sÞ ¼ Ly½ρ�;

∂
∂s ρðy; tjx; sÞ ¼ −L†

x½ρ�; ð1Þ

where L and L† are adjoint with respect to the usual inner
product on the space of densities. We assume that the
conditional density can be written as a sum

ρðy; tjx; sÞ ¼ P0ðyÞ þ
X

λ

eλðt−sÞPλðyÞQ�
λðxÞ; ð2Þ

where the eigentriples ðλ; P;Q�Þ satisfy

L½Pλ� ¼ λPλ; L†½Q�
λ � ¼ λQ�

λ ; ð3Þ

hQλjPλ0 i ¼
Z

dxQ�
λðxÞPλ0 ðxÞ ¼ δλ;λ0 : ð4Þ

Here P0 is the unique stationary distribution corresponding
to eigenvalue 0, Q0 ≡ 1, and for all other eigenvalues λ, we
assume ℜ½λ� < 0. Thus, as ðt − sÞ → ∞, ρðy; tjx; sÞ →
P0ðyÞ. We refer to the system as robustly oscillatory if
(i) the nontrivial eigenvalue with least negative real part
λ1 ¼ μþ iω is complex (with ω > 0), (ii) jω=μj ≫ 1, and
(iii) for all other eigenvalues λ0, ℜ½λ0� ≤ 2μ. These con-
ditions guarantee that the slowest decaying mode, as the
density approaches its steady state, will oscillate with
period 2π=ω, and decay with time constant 1=jμj.
Writing the eigenfunctions of λ1, the slowest decaying
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eigenvalue of the forward and backward operators, in polar
form, we have Pλ1 ¼ ve−iϕ andQ�

λ1
¼ ueiψ , where u; v ≥ 0

and ψ ;ϕ ∈ ½0; 2πÞ. Asymptotically, we obtain with this
notation from Eq. (1)

ρðy; tjx; sÞ − P0ðyÞ
2uðxÞvðyÞ ≃ eμðt−sÞ cos ½ωðt − sÞ þ ψðxÞ − ϕðyÞ�:

ð5Þ

As we now argue, ψðxÞ, the polar angle associated with the
backward eigenfunction, is the natural generalization of the
deterministic asymptotic phase.
For a deterministic LC system, a given asymptotic phase

is assigned to points off the LC by identifying those points
which at an earlier time were positioned so that their
subsequent paths would converge. Suppose we observe a
density of points ρðy; tÞ concentrated near a position on the
LC corresponding to a certain phase θðyÞ ≈ θ0. Fixing a
point x away from the LC, the density ρðx; sÞ at earlier
times s < t will show transient oscillations with period TLC
as the density propagates away from the stable LC in
reverse time. The oscillations observed at two distinct
points x and x0 will be offset by the difference in their
asymptotic phase. Looking forward in time, all trajectories
will continue converging to the LC, so the density for a
point away from the LC will not oscillate—it will
remain zero.
Figure 1 illustrates the analogous measurement of the

phase at a point x from the conditional density at earlier
times, ρðx; sjy; tÞ, for a stochastic oscillator. For a sta-
tionary stochastic time series this density is related to the
conditional density ρðy; tjx; sÞ appearing in Eq. (5) by
ρ0ðx;s;y;tÞ¼ρðy;tjx;sÞP0ðxÞ¼ρðx;sjy;tÞP0ðyÞ (not to be
confused with the detailed balance condition), which can
be used to rewrite Eq. (5) as follows:

ρðx; t − τjy; tÞ − P0ðxÞ
2uðxÞvðyÞP0ðxÞ

≃ eμτ

P0ðyÞ
cos ½ωτ þ ψðxÞ − ϕðyÞ�;

ð6Þ

where we have switched to s ¼ t − τ with τ > 0. If we
select from a stationary ensemble the trajectories that end
up at time t in y, we can estimate the conditional density
ρðx; t − τjy; tÞ and the steady state P0ðxÞ. Fitting then
the left-hand side of Eq. (6) to a damped cosine in τ
(see Fig. 1), we can by virtue of Eq. (6) infer the phase ψðxÞ
at any point x.
We may also obtain the backward-looking phase by

solving the eigenvalue problem Eq. (3) for Q�.
Comparison with the deterministic case again points to
the complex angle of Q� as the analog of the classical
phase. For a deterministic system, dx=dt ¼ AðxÞ, the
conditional density ρðy; tjx; sÞ obeys Eq. (1) with
L†
x½Q� ¼ P

iAiðxÞ∂QðxÞ=∂xi. The function Q1 ¼ eiθðxÞ

with u≡ 1 and ψðxÞ≡ θðxÞ is an eigenfunction of L†
x

with eigenvalue λ ¼ iωLC. The analogous eigenfunction
of the forward operator, Ly½P� ¼ −

P
i∂½AiðyÞPðyÞ�=∂yi,

is identically zero except on the LC, at which it has a
delta-mass radial distribution. Thus P1 is unsuitable for
defining a “phase” anywhere except on the limit cycle
itself.
Noisy heteroclinic oscillator.—Consider the system

_Y1 ¼ cosðY1Þ sinðY2Þ þ α sinð2Y1Þ þ
ffiffiffiffiffiffiffi
2D

p
ξ1ðtÞ;

_Y2 ¼ − sinðY1Þ cosðY2Þ þ α sinð2Y2Þ þ
ffiffiffiffiffiffiffi
2D

p
ξ2ðtÞ; ð7Þ

with α ¼ 0.1, reflecting boundary conditions on the
domain −π=2 ≤ fY1; Y2g ≤ π=2, and independent white
noise sources hξiðtÞξjðt0Þi ¼ δðt − t0Þδi;j. Without noise
(D ¼ 0) the system has an attracting heteroclinic cycle,
but does not possess a finite-period limit cycle. Therefore,
in the noiseless case, there is no classical asymptotic
phase [10].
For weak noise, the system displays pronounced oscil-

lations [Fig. 1(b)], manifest as irregular clockwise rotations
in the ðy1; y2Þ plane [Fig. 1(a)]. We can use large trajecto-
ries and condition them on their end point [red box in
Fig. 1(a)]. As argued above, looking back into the past of
such an ensemble of trajectories, we see for large times a
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FIG. 1 (color online). Trajectory of the heteroclinic oscillator
and the histogram method to estimate the asymptotic phase.
Trajectories in the ðY1; Y2Þ plane like the one shown in (a) that
all end up in the neighborhood of the reference point ðY1; Y2Þ
(red box) are used to estimate the time-dependent probability in
the past in other points ðX1; X2Þ in the plane (blue boxes).
This probability displays asymptotically damped oscillations
[(c),(d)] characterized by the smallest nonvanishing eigenvalue
and a space-dependent phase shift Δðx1;x2;y1;y2Þ¼ψðx1;x2Þ−
ϕðy1;y2Þ, from which the asymptotic phase ψðx1; x2Þ can be
extracted [the constant offset still depends on the reference point
ðy1; y2Þ]. Stochastic oscillations of the variables are shown in (b).
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damped oscillation [Figs. 1(c) and 1(d)], the damping
constant and frequency of which should be related to the
real and imaginary parts of the first nonvanishing eigen-
value. Indeed, we have checked by fitting a damped cosine
according to Eq. (6) to the counting histograms of the
backward probability at different positions, that the esti-
mate of μ and ω is largely independent of location (not
shown). More importantly, fitting a damped cosine function
also provides an estimate of the asymptotic phase ψðx1; x2Þ
in Eq. (6). We verified that [up to a fixed phase shift at every
point ðx1; x2Þ] the resulting phase does not depend on the
choice of the reference point ðy1; y2Þ.
As outlined above, the asymptotic phase is also given by

the complex phase of the eigenfunction for the slowest
eigenvalue of the system. For the process Eq. (7), the
backward operator reads explicitly

L† ¼ ½cosðx1Þ sinðx2Þ þ α sinð2x1Þ�∂x1 þD∂2
x1

þ ½− sinðx1Þ cosðx2Þ þ α sinð2x2Þ�∂x2 þD∂2
x2 : ð8Þ

We solve the eigenvalue problem Eq. (3) for the system by
expanding the eigenfunctions in a Fourier basis Q�

λ ¼P
cm;n;λeiðmx1þnx2Þ and computing the eigenvalues and

eigenvectors of the corresponding matrix equation numeri-
cally. The leading eigenvalues are shown in Fig. 2(c) for
two different noise values. Under both noise conditions, the
first nonvanishing eigenvalues form a complex conjugate
pair (framed) that is well separated from the remaining
eigenvalues. As we would expect, for a lower noise level
(D ¼ 0.01125, black filled circles) this separation is more
pronounced than for a higher level (D ¼ 0.1, red empty
circles).
The complex phase of the eigenfunction for the two

distinct noise levels is shown in Figs. 2(a) and 2(b). The
phase increases in the same direction as the local mean
velocity (clockwise) in both cases. For weaker noise, the
phase winds inward more steeply; i.e., the inward radial
component of ∇ψ is larger.
In Figs. 2(a) and 2(b) we also superimpose data (blue

points) generated by the histogram method, subject to a
uniform constant vertical offset. The agreement of these
two surfaces demonstrates that the asymptotic phase can be
obtained by the solution of the partial differential Eq. (3) for
model systems, for which this equation is known, but also
from trajectories of the system obtained either by stochastic
simulations (for a model) or measurements (experimental
data).
Neural oscillator with ion channel noise.—Izhikevich

introduced a planar conductance-based model for excitable
membrane dynamics [12] that is similar to the well-known
two-dimensional Morris-Lecar model [13,14]. We consider
a jump Markov process version of Izhikevich’s model, in
which noise arises from the random gating of a small,

discrete population of Ntot potassium (K) channels, which
switch between an open and a closed state. Conditional on
NðtÞ, the number of open channels at time t, the voltage V
evolves deterministically:

C
dV
dt

����
N
¼ I0 − ILðVÞ − INaPðVÞ − IKðV;NÞ

¼ CfðV;NÞ ð9Þ

where I0 is an applied current, IL is a passive leak current,
INaP is a deterministic “persistent sodium” current and IK is
a potassium current gated by the number of open potassium
channels, 0 ≤ N ≤ Ntot. We used standard parameters [15].
The number of open channels NðtÞ comprises a con-

tinuous time Markov jump process with voltage dependent
per capita transition rates αðvÞ for channel opening and
βðvÞ for channel closing [12]. We generated trajectories of
the joint ðV;NÞ process using an exact stochastic simu-
lation algorithm that takes into account the time-varying
transition rates α and β [16,17]. Figure 3(a) shows a
trajectory in the ðv; nÞ plane for Ntot ¼ 100 channels
and applied current I0 ¼ 60. The light and dark grey
dashed lines show the v nullcline and n nullcline, respec-
tively. In contrast to the noisy heteroclinic oscillator, this
system has a stable limit cycle in the limit of vanishing
noise (Ntot → ∞) with finite period TLC ≈ 5.9825.
The forward and backward equations for this system are

given in terms of fðv; nÞ [Eq. (9)], αðvÞ, and βðvÞ [15]:

FIG. 2 (color online). Asymptotic phase of the stochastic
heteroclinic oscillator for two different noise levels. The complex
phase of the backward eigenfunction (solid lines) is compared
to the results of the histogram method [11] for D ¼ 0.1 (a) and
D ¼ 0.01125 (b). Eigenfunctions used in (a) and (b) correspond
to the slowest eigenvalues, marked by dashed boxes in (c).
Isochrons at lower noise level [black in (d)] are more curled
than for stronger noise [red in (d)]. Thick lines in (d) denote 2π
jump in phase.
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∂
∂t ρðv

0; n0; tjv; n; sÞ ¼ Lv0 ½ρ� ¼ −
∂
∂v0 ½fðv

0; n0Þρ� − ðαðv0ÞðNtot − n0Þ þ βðv0Þn0Þρ
þ αðv0ÞðNtot − ðn − 1ÞÞρðv0; n0 − 1; tjv; n; sÞ þ βðv0Þðn0 þ 1Þρðv0; n0 þ 1; tjv; n; sÞ ð10Þ

−
∂
∂s ρðv

0; n0; tjv; n; sÞ ¼ L†
v½ρ� ¼ fðv; nÞ ∂ρ∂vþ αðvÞðNtot − nÞfρðv0; n0; tjv; nþ 1; sÞ − ρðv0; n0; tjv; n; sÞg

þ βðvÞnfρðv0; n0; tjv; n − 1; sÞ − ρðv0; n0; tjv; n; sÞg ð11Þ

We approximate the operator L† with a finite difference
scheme by discretizing the voltage axis −80 ≤ v ≤ 20 into
200 bins of equal width. We obtain the eigenvalues and
eigenvectors of the matrices approximating L and L† using
standard methods (MATLAB, The Mathworks). Figure 3(b)
shows the dominant (slowest decaying) part of the eigen-
value spectrum. Note the occurrence of a family of
eigenvalues of the form λk ≈�iωk − μk2; k ¼ 0; 1; 2;…
The quadratic relationship between the real and imaginary
parts of the eigenvalues of this form is consistent with the
existence of a change of coordinates under which the
evolution takes the approximate form of diffusion on a ring
with constant drift, _φ ¼ ωþ ffiffiffiffiffi

2μ
p

ξðtÞ. Here the eigensys-
tem is exactly solvable, and the spectrum lies on the same
parabola.
In Fig. 3(b), the first nonzero pair (framed) for Ntot ¼

100 is λ1 ≈ −0.031� 1.0475i, corresponding to a period
for the decaying oscillation of T ≈ 5.9985 (cf. TLC above)
and ω=jμj ≈ 33.7 ≫ 1. All other eigenvalues have a real
part less than or equal to 4μ, so the system is “robustly
oscillatory” according to our criteria (i)–(iii).
Figure 3(c) shows level curves of the asymptotic phase

function ψðv; nÞ in three cases, along with the nullclines
from panel (a). For Ntot → ∞ the process converges to the
solution of a system of nonlinear ordinary differential

equations for v and n [18]. This system possesses a stable
limit cycle for which the phase θ and isochrons are obtained
in the standard way [12] (blue curves). Near the unstable
spiral fixed point at the intersection of the nullclines, the
deterministic isochrons exhibit a pronounced twisting.
For Ntot ¼ 100, with moderately noisy dynamics, the level
curves of the asymptotic phase ψ for the stochastic system
(black curves) lie close to the determinstic isochrons. The
greatest differences appear in a rarely visited region, in
the neighborhood of the unstable fixed point. As in the
heteroclinic system [Fig. 2(d)], the less noisy system has
more tightly wound isochrons. For Ntot ¼ 25, correspond-
ing to an even larger noise level, the stochastic isochrons
(red curves) show even less twisting. At both noise levels,
the stochastic isochrons show greatest similarity to the
deterministic isochrons in the region corresponding to the
upstroke of the action potential, and show the greatest
discrepancy at subthreshold voltages.
Discussion.—Most investigations have approached noisy

oscillators by studying the effects of weak noise on a
deterministically defined phase [19–23]. We generalize the
classical asymptotic phase to the stochastic case in terms of
the eigenfunctions of the backward operator describing the
evolution of densities with respect to the initial time. As
with the stochastic phase defined via the MFPT [7–9], the
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FIG. 3 (color online). Trajectory, nullclines, eigenvalues of the backward operator, and asymptotic phase lines for the persistent-
sodium–potassium model. (a) Sample trajectory (thin black line) for the ðV;NÞ process for Ntot ¼ 100 channels, and nullclines for the
deterministic v (thick grey line) and n (thick black line) dynamics. (b) Low-lying spectrum for L† for two different channel numbers,
Ntot ¼ 100 (black dots) and Ntot ¼ 25 (red crosses). Dashed boxes indicate the leading complex conjugate eigenvalue pairs. (c) Level
curves (isochrons) of the asymptotic phase for Ntot ¼ 25 (red), Ntot ¼ 100 (black), and Ntot ¼ ∞ (blue; deterministic case). The thick
lines indicate the locations of the phase jump by 2π, which have been adjusted to coincide for the three cases. Isochrons are marked in
equal increments of 2π=20. Nullclines as in (a).
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backward-looking asymptotic phase is well defined
whether or not the underlying deterministic system has a
well-defined phase. However, if the classical phase exists,
in the absence of noise, our asymptotic phase is consistent
with the classical definition.
The MFPT approach has been applied to non-Markovian

systems [9]. Our operator approach would not apply to a
non-Markovian process unless it can be embedded in a
higher-dimensional Markovian system [24]. Moreover,
for a Markovian system, the MFPT from a point x to a
given surface obeys an inhomogeneous partial differential
equation involving the same adjoint operator L†

x, an
eigenfunction of which defines our asymptotic phase. Thus,
the relationship between Schwabedal and Pikovsky’s
phase description of stochastic oscillators and our
asymptotic phase remains an appealing topic for future
research.
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