PRL 113, 253902 (2014)

PHYSICAL REVIEW LETTERS

week ending
19 DECEMBER 2014

Macroscopic Manipulation of High-Order-Harmonic Generation Through
Bound-State Coherent Control

Itai Hadas and Alon Bahabad
Department of Physical Electronics, School of Electrical Engineering, Iby and Aladar Fleischman Faculty of Engineering,
Tel-Aviv University, Tel-Aviv 69978, Israel
(Received 28 May 2014; published 19 December 2014)

We propose a paradigm for macroscopic control of high-order harmonic generation by modulating the
bound-state population of the medium atoms. A unique result of this scheme is that apart from regular
spatial quasi-phase-matching (QPM), also purely temporal QPM of the emitted radiation can be
established. Our simulations demonstrate temporal QPM by inducing homogenous Rabi oscillations in
the medium and also spatial QPM by creating a grating of population inversion using the process of rapid
adiabatic passage. In the simulations a scaled version of high-order harmonic generation is used: a far
off-resonance 2.6 ym source generates UV-visible high-order harmonics from alkali-metal-atom vapor,
while a resonant near IR source is used to coherently control the medium.
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High-order harmonic generation (HHG) is an extreme
nonlinear process in which a medium ionized by a short
ionizing laser pulse emits attosecond pulses made of up-
converted harmonics of the pump frequency [1,2]. HHG
has become a valuable research resource due to its ability to
pump and probe electronic dynamics in single atoms and
molecules [2,3].

In many cases frequency-conversion processes suffer
from low conversion efficiency due to dispersion induced
phase mismatch between the pump and the converted
emission. Quasi-phase-matching (QPM) [4] is a macro-
scopic manipulation technique which applies a systematic
correction to the phase mismatch, increasing significantly
the conversion efficiencies. In the last two decades various
QPM schemes have been experimentally demonstrated
for HHG. In all of these cases a periodic modulation of
either the medium [5-8] or pump field [9-11] was used.
Traditionally, the phase mismatch of the nonlinear process
is interpreted as a momentum imbalance between the
interacting photons while QPM provides a spatial modu-
lation to replace momentum conservation with the less
restricting quasimomentum conservation [12]. In 2010, it
was shown [13] that the phase mismatch can also be cast in
the form of an energy imbalance, requiring QPM to provide
a temporal modulation. That work showed that a previous
experiment [10] demonstrating all-optical QPM using a
train of counterpropagating pulses was actually employing
a spatiotemporal modulation to fix both a momentum and
an energy mismatch. To date, purely temporal QPM is yet
to be demonstrated.

Here we propose to use coherent control [14,15] on the
bound-state electronic population of the medium’s atoms
(or molecules) to establish macroscopic control of HHG.
Thus QPM would be achieved through modulation of the
internal state of the medium’s atoms. Depending on the
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type of modulation, either spatial or purely temporal QPM
would be established.

We mention that extensive work has been done on HHG
from an excited medium. Some interesting phenomena
have been simulated and observed such as the increase of
the harmonic yield in comparison with a medium initially
in its ground state [16-20], increase of the cutoff energy
[20,21], generation of single attosecond pulses [20,22],
generation of two distinctive harmonic plateaus with
different conversion efficiencies [23,24], and for control-
ling and monitoring attosecond scale electron dynamics
[25,26]. There have also been studies of the contribution of
different channels within a superposition state to the HHG
spectrum [27,28]. Here a HHG channel is defined by the
bound state from which an electron is being ionized and the
bound state to which it recombines to emit the harmonic
radiation. For an initially unexcited medium the only
channel is the ground-ground (gg) channel, while for an
excited medium with a single excited state (e) there are
three more possible channels: ge, eg, and ee (see Fig. 1).
Macroscopically, spatial population gratings have been
used for HHG transient grating spectroscopy, allowing
us to extract the amplitude and phase dynamics of excited
rotational or vibrational molecular states at low excitation
levels [29-32]. Finally, it was suggested to use a transient
molecular alignment grating as a spatial QPM for the
process of third harmonic generation [33].

Here we show how a coherent manipulation of the
electronic population of two bound states together with
the process of HHG, can achieve macroscopic control in the
form of spatial or temporal QPM of the emitted high-order
harmonics radiation. Let us first consider an excited
medium, with constant ground and excited state popula-
tions, |a,|* and |a,|*, respectively, where a,, and a, are the
appropriate probability (population) amplitudes. Expending
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FIG. 1 (color online). Four channels of HHG from a two-level
system. g is the ground state of the atom, e is the first excited
state, and ¢ represents continuum states. Each channel includes
the ionization of an electron from one of the bound states to the
continuum and its recombination into a bound state, e.g., ge
means that an electron is ionized from the ground state of the
atom and recombines into the excited state. The dashed line
separates channels which have different phase mismatch values in
case the index of refraction changes during the interaction.
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a previously used single atom nomenclature [28] to the
macroscopic domain, we write the polarization of the
medium for a specific gth harmonic order as

P(z,t;w,) eiA¢y(Z")[|ag|2dgg(a)q,g) + aya,d, (w,,)]
+ eiA(ﬁe(z,t) [lae|2dee <(Uq,e) =+ aga:dge(wq,e)]’

(1)

where d;;(w,) is the Fourier component of the dipole
moment matrix element for the ij channel (i, j € {e, g}) at
frequency w,; = qwy, — Aw,, (i € {e, g}). w, is the HHG
pump frequency, and Aw; is the energy mismatch [13]. Ag,
and A¢, are the phase mismatch values associated with
channels which recombine to the g state and to the e state,
respectively. An electron recombining to state g or to state e
would lead to the emission of different photon energies.
Thus the emission of the same photon energy while
recombining to different bound states could only be the
result of different electron trajectories—hence the time of
recombination would be different for the two cases.
Because in general the dispersion in a medium experienc-
ing ionization is time dependent, the associated phase
mismatch values would be time dependent as well. The
general expression for a spatiotemporal phase mismatch is
[13] A¢; = Ak;z — Aw;t, where Ak; and Aw; are the
momentum and energy mismatch components, respec-
tively. For traditional spatial QPM, Aw is zero, while for
purely temporal QPM, Ak is zero. The dispersion relation
for the phase mismatch components is [13]

qmg

n(@g,1) Aw; + == [n(wo) = n(w,)]  (2)
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where n(w) is the index of refraction. The phase
mismatch terms preclude the polarization terms in different
interaction coordinates to be added in phase. To establish
QPM we modulate the population amplitudes. This modu-
lation can be spatial, temporal or spatiotemporal for the
appropriate desired type of QPM. It is important to
understand that this modulation is done quasistatically
with regards to the interaction of the atoms with the
HHG pump. From the perspective of any single atom in
the medium, the coherent control beam prepares the
population distribution between the bound states towards
the interaction with the HHG pump beam.

To establish purely temporal QPM, we suggest to
irradiate the medium uniformly with a close to resonant
laser pulse perpendicular to the HHG pump beam to induce
uniform Rabi oscillations (periodic population oscillations
between the g and e states) [34]. The Rabi oscillations
serve, in this case, as a temporal periodic grating from
which the pump diffracts nonlinearly to emit the HHG
emission in phase [13]. Alternatively—for spatial QPM—
the medium can be irradiated perpendicularly to the HHG
pump beam with a chirped laser pulse inducing rapid
adiabatic passage (RAP—where all the ground state pop-
ulation is transferred to the excited state) [14] through a
mask of periodically spaced slits. In this case a spatial
periodic grating of electronic state’s population is estab-
lished. These schemes are depicted in Fig. 2.

We choose to demonstrate this concept numerically in
rubidium vapor medium as it is easily subject to coherent
control. However, this technique is quite general and can be
applied to other systems as well. The bound states to be
controlled are the 55/, and 5P, states (defining the D,
absorption line) with a transition wavelength of 795 nm.

interaction cell

HHG HHG
= ___1ji__ j—
pump

optional mask

ey Cylindrical lens

Coherent Control
pump

FIG. 2 (color online). Proposed setup for QPM of HHG using
bound-states coherent control: A HHG pump pulse propagates
along the interaction axis generating high-order harmonics. A
coherent control pulse is focused uniformly using a cylindrical
lens upon the interaction axis within an interaction cell, modu-
lating the atomic population of the medium either in space by
generating a quasi-static spatial population grating (with the aid
of the additional mask) or in time by generating a temporal
population grating through Rabi oscillations (without the mask).
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The HHG pump is set to be far off-resonance with a
relatively long wavelength of 2.6 um. This reduces absorp-
tion of the HHG pump, but more importantly—the high-
order harmonics are generated in the visible and ultraviolet
wavelengths and there is no need for a vacuum based setup.
Similar wavelength scaled versions of HHG in rubidium
were demonstrated experimentally [18,35].

In the simulation the rubidium vapor pressure is 0.1 torr,
corresponding to 1.9583 x 10! atoms/cm?, attainable for
a temperature of 220°C. Such a relatively low pressure
provides very small dispersion difference between the
HHG pump and harmonics (they are all far off-resonance).
In order to observe phase mismatch effects over centimeter
length scales, an argon buffer gas at a pressure of 600 torr is
added to the simulated interaction cell. The phase mismatch
is dominated by the buffer gas which is not ionized by the
HHG pump beam (as its ionization potential is much higher
than that of rubidium). As such, for this system, the
dispersion is constant in time and A¢, = A¢g,. Using a
known Sellmeier equation [36] the coherence length
between the HHG pump and the 13th harmonic is calcu-
lated to be 877 um.

For temporal QPM the coherent control beam is set to
induce Rabi oscillations in the medium oscillating at the
generalized Rabi frequency Qi = vVQ? + A% where Q =
g E/ R is the Rabi frequency dependent upon the transition
dipole moment u, and the amplitude of the coherent
control pump E. A is the frequency detuning from exact
resonance. The generalized Rabi frequency should match
the value of the temporal phase mismatch. We choose to
phase match the 13th harmonic (wavelength of 200 nm)
whose temporal phase mismatch is calculated, using
Eq. (2), to be 1.075 x 10'2 rad/s which is about 0.15%
of the HHG pump frequency. To reduce the absorption of
the coherent control pump, a frequency detuning of A =
0.08€2 is used. Using the tabulated value of p,, [37], the
required field intensity is 1.1 x 107 W/cm?. The coherent
control pulse is applied in the form of a hyperbolic secant
pulse with a pulse width (FWHM) of 0.1 ns which is much
longer than required for an interaction length of 1 cm yet
shorter than the dephasing time of the system which is
calculated (taking into account Doppler and pressure
broadening) to be 0.5 ns. Propagation of the coherent
control pump and the induced electronic population
dynamics are calculated by numerically integrating the
Maxwell-Bloch equations [34] using the fourth-order
Runge-Kutta (RK4) method. The propagation is calculated
along 5 mm from the side entrance of the interaction cell to
the propagation axis of the HHG pump, where the Rabi
oscillations are needed for QPM. The results of this
simulation are shown in Fig. 3. The pulse envelope is
perturbed, however, the induced Rabi oscillations around
the peak of the pulse are at the required frequency, and they
are maintained at this frequency within variations of less
than 10% for about 50 ps, longer than the required 33 ps for
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FIG. 3 (color online). Rabi oscillations induced by a coherent
control electric field propagating in the medium. The black
dashed line shows the coherent control field envelope after
propagating 5 mm in the medium. The blue solid line shows
the population inversion in the medium induced by the coherent
control field. The inset shows a close up of the population
inversion around the peak of the pulse, showing periodic
oscillations with the desired generalized Rabi frequency.

allowing the HHG pump beam to interact with a uniform
temporal grating along a propagation length of 1 cm.

For spatial QPM, the coherent control pump is set to
induce RAP through a slitted mask. For RAP, a chirped
pulse with a slow (adiabatic) frequency sweep around the
relevant transition resonance of the medium can be used.
The pulse parameters should satisfy the adiabaticity con-
dition [14] |QA — AQ| < 2(Q2 + A?)%/2, where the dots
stand for time derivatives. For the simulation, total pop-
ulation inversion via RAP behind the slits of the mask is
assumed, resulting in a rectangular periodic grating of
electron population.

For the full simulation, the medium is prepared by the
coherent control pump while the HHG pump is propagat-
ing. The 2.6 ym HHG pump duration is set to be 25 fs and
its peak intensity is 2 x 10'> W/cm?, corresponding to the
cutoff at the 17th harmonic.

The propagation of the HHG pump through the medium
has been simulated using the propagation equation of
Geissler et al. [38] with an additional dispersion term
for the buffer gas. The harmonics generation has been
simulated through the solution of the one-dimensional
Schrodinger equation using the split step method. The
initial state for the solution of the Schrédinger equation at
every propagation coordinate is determined through the
coherent control scheme.

The results of the simulations are shown in Fig. 4. In
Fig. 4(a), the HHG spectrum at the end of the interaction
length is plotted for no QPM (solid black line), for temporal
QPM (dashed blue line) and for spatial QPM (dash-dotted
red line). The enhancement for the quasi-phase-matched
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FIG. 4 (color online).
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QPM of HHG using bound states’ coherent control. (a) Harmonic spectrum at the end of the interaction cell,

normalized to the strongest harmonic emission. (b) Thirteenth harmonic evolution along the HHG pump propagation direction,
normalized to the strongest enhancement during the propagation. The solid black line represents propagation in a medium with no QPM,
the dashed blue line represents propagation in a medium with temporal QPM prepared with Rabi oscillations and the dash-dotted red line
represents propagation in a medium with spatial QPM prepared with RAP and a mask of slits. (c),(d),(e): Evolution of the HHG
spectrum, normalized for each harmonic order separately, with (c) no QPM, (d) spatial QPM, and (e) temporal QPM.

13th harmonic is about 2 orders of magnitude compared
with the non-phase-matched case. In Fig. 4(b) the evolution
of the 13th harmonic as a function of propagation is plotted
for the same three cases. For the QPM cases, a character-
istic growth is observed, while for the non-QPM case the
regular oscillatory evolution is observed. Figures 4(c), 4(d)
and 4(e) show the buildup intensity of all the harmonic
orders below the cutoff for no QPM, spatial QPM, and
temporal QPM, respectively. When no QPM is applied an
oscillating pattern for all harmonic orders is observed—
each with its associated periodicity of 27/ Ak. With spatial
QPM the harmonic orders around the 13th harmonic are
being built while the other harmonics still oscillate along
the interaction coordinate. For the case of temporal QPM,
due to the use of a sinusoidal modulation of the population,
a strong response at the transition frequency of the D1 line
is observed as well.

In summery, we have shown that manipulating the bound
state population of a medium’s atoms can be used for
macroscopic control over the process of HHG. This can be
done by either employing a spatial or a temporal grating of

atomic bound state population in the medium. The temporal
grating is interesting due to two reasons: First, it supplies a
framework for the realization of temporal QPM, which is
yet to be demonstrated experimentally. Second, it is a
highly tunable method for phase matching. To phase match
different harmonic orders, one simply has to modify the
amplitude or detuning of the coherent control beam. Two
different regimes of coherent control were used together in
this work—coherent control between bound states and
attosecond coherent control manifested in the process of
HHG where the control is applied to both a bound state and
the continuum. Such a combination might be useful for
quantum tomography [39,40] using the ability of the
presented macroscopic control scheme to isolate specific
HHG channels in an ionization dominant excited medium.
Alternatively it would be interesting to use a temporal
population grating to map the radiation emitted from an
excited medium onto frequency shifted orders (as the
temporal analogue to diffraction from spatial gratings onto
crystal-momentum shifted orders). Further directions worth
exploring are extension of the presented concepts to cases

253902-4



PRL 113, 253902 (2014)

PHYSICAL REVIEW LETTERS

week ending
19 DECEMBER 2014

of multiple excited states and to the application of more
elaborate coherent control schemes, involving spatiotem-
poral population modulation and accelerating modulations
[41]. In addition, extension of the underlying ideas to other
media and settings is also possible. Examples are molecular
systems, noble gases with the application of multiphoton
Rabi oscillations, initially excited noble gases or applica-
tion of an EUV source for coherent control.
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