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We address the question of how to improve the agreement between theoretical nuclear single-particle
energies (SPEs) and observations. Empirically, in doubly magic nuclei, the SPEs can be deduced from
spectroscopic properties of odd nuclei that have one more or one less neutron or proton. Theoretically, bare
SPEs, before being confronted with observations, must be corrected for the effects of the particle vibration
coupling (PVC). In the present work, we determine the PVC corrections in a fully self-consistent way.
Then, we adjust the SPEs, with PVC corrections included, to empirical data. In this way, the agreement
with observations, on average, improves; nevertheless, large discrepancies still remain. We conclude that
the main source of disagreement is still in the underlying mean fields, and not in including or neglecting the
PVC corrections.
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Finite many-fermion systems, such as quantum dots,
ultracold Fermi gases, atoms, or atomic nuclei, exhibit
conspicuous shell effects. These can easily be modeled
within mean-field approaches, which assume that fermions
occupy single-particle states in a common one-body
potential. In nuclei, the ensuing shell effects are responsible
not only for sequences of excited states in odd nuclei, and
for their quadrupole or magnetic moments, but also for
deformation properties, including the fission phenomena,
or detailed features of rotational bands [1–4].
A precise description of nuclear spectroscopic proper-

ties, that is, those pertaining to single-particle structures, is
one of the most important goals of theory. The theoretical
approach that is particularly well suited to describe these
structures is the energy-density-functional (EDF) formal-
ism, wherein the Kohn-Sham single-particle orbitals play
an essential role. Although the Kohn-Sham single-particle
energies (SPEs), or bare SPEs, have, in principle, only an
auxiliary meaning, see, e.g., the recent analysis in Ref. [5],
in nuclei they do provide a fair description of masses
and excited states of odd nuclei. The question of
quantitative determination of many-body corrections to
nuclear SPEs is a matter of ongoing debate, see
Refs. [6–11].
In practice, all nuclear EDFs currently used in applica-

tions depend on parameters or coupling constants adjusted
to empirical data [12,13]. In addition, most of them were
constructed by adjusting bare SPEs to selected empirical
information. Therefore, it is not at all clear to what extent
the many-body corrections were, or were not, included in
the EDFs’ parameters, and thus whether it is legitimate to
add them a posteriori.

In the present Letter, we take up the challenge of
adjusting EDFs’ parameters to empirical SPEs after having
added many-body corrections. This is certainly the right
way of proceeding, which was never tried up to now, and
which allows us to study the interplay between the mean-
field and beyond-mean-field effects on the SPEs.
We determined the many-body corrections to SPEs

within the standard particle-vibration-coupling (PVC)
model [1,6,14–16], which is based on coupling particles
and holes with the random-phase-approximation (RPA)
phonons up to second order of perturbation theory. The
calculations were performed in a fully self-consistent way,
that is, the same Skyrme EDF parametrization was used to
determine the ground states of even-even nuclei, single-
particle states, RPA phonons, and particle-phonon vertices.
The PVC correction δϵi to the SPE ϵi of the ith state has the
form [6]

δϵi ¼
1

2ji þ 1

�X
nJp

jhijjVjjp; nJij2
ϵi − ϵp − ℏωnJ þ iη

þ
X
nJh

jhijjVjjh; nJij2
ϵi − ϵh þ ℏωnJ − iη

�
; ð1Þ

where hijjVjjp; nJi and hijjVjjh; nJi are, respectively, the
standard particle-phonon and hole-phonon vertex reduced
matrix elements. Similarly as in Ref. [6], a small imaginary
parameter is added to the denominator with η ¼ 0.05 MeV.
Let us briefly discuss the physical contents of the PVC

correction (1). A rigorous density functional theory for-
malism based on the Hohenberg-Kohn [17] and Kohn-
Sham [18] theorems stipulates that there exists an exact
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universal functional, which should give the exact lowest
energies (in each quantum number) of even and odd nuclei,
which can be directly compared with experimental masses.
Needless to say, such an exact functional is not known.
However, we know that when a phenomenological EDF is
minimized in even and odd nuclei, the resulting odd-even
mass differences are not equal to the Kohn-Sham energies,
see the recent Ref. [19] for discussions and further
references. Then, the so-called polarization corrections to
particle and hole SPEs are equal to diagonal terms in
Eq. (1), for i ¼ p and i ¼ h, respectively. Full PVC
correction (1) can thus be regarded as an approximate
way to generalize our functional so as to model the degrees
of freedom associated with the mixing of the odd particle
with particle-vibration coupled states.
In the present Letter, we concentrate on presenting

results obtained for the bare and PVC-corrected SPEs.
As discussed above, the former ones do not have physical
meaning; however, they provide us with a simple illus-
tration of one-body nuclear properties, and we show them
below as an important background that facilitates commu-
nication and comparison of results.
As a baseline of our analysis, we used a set of five

different Skyrme EDF parametrizations, SAMi [20], SLy5
[21], SIII [22], SkM� [23], and SkP [24], which are
characterized by quite different effective masses, ranging
from m�=m ¼ 0.675 to 1. We carried out the calculations
using the spherical solver HOSPHE [25,26], in which the
determination of the PVC corrections was implemented
[27]. The mean-field, RPA, and PVC solutions were
obtained with a harmonic-oscillator basis using 15 oscil-
lator shells (17 shells for 208Pb).
We included effects of phonons with both parities and

considered multipolarities ranging from J ¼ 0 to 15,
although only for phonons up to J ¼ 6 we obtained a
significant impact on the results. The PVC corrections were
determined in the single-particle and phonon spaces
restricted to below 15 and 30 MeV, respectively. In addition,
only significantly collective phonons, that is, those con-
tributing more than 5% to the non-energy-weighted sum
rule of the given channel, were taken into account [6,14].
A detailed analysis of numerical conditions and conver-
gence will be presented in the forthcoming publication [27].
In Figs. 1 and 2, we show values of the PVC corrections

calculated for neutron and proton SPEs, respectively, in six
doubly magic nuclei 16O, 40Ca, 48Ca, 56Ni, 132Sn, and
208Pb. Those values are also tabulated in the Supplemental
Material [28]. We see that in some cases (e.g., j ¼ 1=2
states in 56Ni), the largest (smallest) PVC corrections are
obtained for the smallest (largest) effective masses; how-
ever, the pattern of PVC corrections depends strikingly
weakly on the EDF parametrization.
Experimentally, the SPEs are not measurable

quantities and they cannot be defined in an entirely
model-independent way [5]. They are usually associated

with masses and spectra of odd nuclei by considering the
so-called spectroscopic factors related to probabilities of
one-nucleon transfer reactions. Different analyses of this
type exist in the literature, and for the purpose of the present
study, we use those of Grawe et al. [31–33] (data set A),
Schwierz et al. [34] (data set B), and Porquet et al. [35–37]
(data set C). In addition, we also compare our results to two
derived or reduced data sets: (i) data set M, which contains
average values of SPEs simultaneously listed in data
sets A, B, and C, provided the three energies agree with
the average values within 200 keV, and (ii) data set S, which
contains a subset of data set B for spectroscopic factors
larger than 0.8. In this way, data set M contains SPEs, for
which the three evaluations agree best, and data set S
contains those which correspond to least fragmented states.
All data sets used in the present Letter are listed in the
Supplemental Material [28].
In Fig. 3, we show residuals of bare and PVC-corrected

SPEs, calculated with respect to empirical values of data set
A. We see that both bare and PVC-corrected SPEs poorly
agree with data, with deviations reaching up to around
4 MeV. The distributions of residuals are manifestly non-
statistical; hence, strong systematic effects are still present
[38]. Clearly, PVC corrections do not improve the picture
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FIG. 1 (color online). PVC corrections calculated for neutron
SPEs in six doubly magic nuclei and for five parametrizations of
the Skyrme EDF. For each nucleus, thin vertical lines separate
hole and particle states. (a) and (b) show results for light and
heavy nuclei, respectively.
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significantly. Simply adding the PVC corrections to bare
SPEs calculated for standard EDFs is insufficient, and the
readjustment of EDFs, as proposed in the present study, is
mandatory.
To perform adjustments of the EDF coupling constants

to empirical SPEs, we follow the methodology of

regression analysis, as it was applied in Ref. [39]. The
method is based on the observation that the standard
Skyrme energy density, see, e.g., Refs. [40,41], depends
linearly on the 12 EDF coupling constants, Cm,
m ¼ 1;…; 12. In Ref. [39], it has been shown numerically
that the above linear dependence carries over to an
approximate linear dependence of bare SPEs on Cm. We
are using this fact in order to build the regression
matrix Iim ¼ ∂ϵi=∂Cm, where the partial derivatives are
calculated using the finite-difference formula for SPEs ϵi
corresponding to coupling constants C0

m � dm, perturbed
by suitably small shifts dm. In this way, we determine the
regression matrices for coupling constants C0

m correspond-
ing to five Skyrme EDF parametrizations considered in
this study.
Using the regression matrices, and assuming that for

reasonably small changes of the coupling constants they do
not significantly change, one can fit the EDF coupling
constants to the empirical SPEs. To this end, one must solve
the set of linear equations, r0i ¼

P
mIimΔCm, where r0i ¼

ϵ0i − ϵexpi are residuals of SPEs calculated for a given
Skyrme EDF and ΔCm are corrections to coupling con-
stants. Since the numbers of empirical SPEs (M ¼ 93, 83,
78, 48, and 49 for data sets A, B, C,M, and S, respectively)
are larger than the number of coupling constants (12), the
best approximation is obtained within the standard least-
squares method, see, e.g., Ref. [42], which minimizes
the rms deviation between the theory and experi-
ment, Δϵrms ¼ ½ð1=MÞPM

i¼1ðϵi − ϵexpi Þ2�1=2.
Figures 4 and 5 summarize results obtained after the fits

and compare them to those determined before the fits, that
is, to those corresponding to the original five Skyrme EDF
parametrizations. We note that the fitted values of SPEs
were obtained directly from the regression analysis.
Figure 4 shows partial rms deviations corresponding to
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FIG. 2 (color online). Same as in Fig. 1 but for proton SPEs.
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the six studied nuclei, whereas total rms deviations are
shown in Fig. 5.
First, in Fig. 5 we see that the bare SPEs obtained for

standard Skyrme EDFs exhibit a conspicuous effective-
mass dependence, with those corresponding to m�=m ¼ 1
being, on average, closest to data. This reflects the general
feature of adjusting EDFs to ground-state properties,
whereupon one systematically obtains the best fits for
m�=m ¼ 1 [13]. In Fig. 4(a) we also see that this trend is
reversed in 16O and absent in 40;48Ca, so the effect is clearly
marked only in heavy nuclei.
Second, in Fig. 5 we see that for them�=m ≤ 1 EDFs, the

PVC-corrected SPEs agree (before the fit) slightly better
with empirical SPEs than the bare SPEs. The degree of
improvement is systematic, but small—so small that in
Fig. 3 it is not even really visible. For the m�=m ¼ 1 EDF,
where already the bare SPEs agree with data best, the PVC
corrections lead to a deteriorated agreement.
Third, fits to bare and PVC-corrected SPEs, Figs. 4(c),

4(d), and 5, give rms deviations that are very weakly
dependent on variants of the Skyrme EDF. This indeed
confirms the validity of our regression analysis, because
independently of the starting point, linearity of the problem
allows for bringing all optimized SPEs to one common
point. Note that these results indicate that the PVC
corrections alone also depend on the coupling constants
approximately linearly. The remaining weak dependence
on the starting point may reflect possible small nonlinear-
ities as well as the fact the studied EDFs are defined with
different powers of the density dependence, which were not
included in the regression analysis. At the same time, we
should bear in mind that the regression analysis can be ill
conditioned, cf. Ref. [43], that is, while giving robust
values of the rms deviations, which are discussed in this
Letter, it may give poorly defined values of model
parameters.

Most important, in Fig. 5 we see that fits of neither bare
nor PVC-corrected SPEs can bring us below the glass floor
of about 1 MeV of the total rms deviation. The independ-
ence of this limit to the PVC corrections being included or
not, shows that they are not really giving us, on average,
any better agreement with empirical SPE’s. Moreover, it
also shows that the impact of the PVC corrections on SPEs
can be fairly well absorbed in the current parametrization of
the Skyrme EDF.
As seen in Fig. 5, details of the comparison with

observations are still dependent on the way the empirical
SPEs are extracted from data. However, independently of
which of the data sets A, B, or C is used, the optimized
results again do not go below the limit of about 1 MeV rms
deviation. In fact, the exact value of this limit depends on
the selection of the empirical data [28]—considering only
those data points where data sets A, B, and C agree within
�200 keV (data set M), the rms goes down to about
0.8 MeV, and for those corresponding to spectroscopic
factors larger than 0.8 (data set S), it stays at about 1.1 MeV,
where it also was for data set B.
In conclusion, the findings of the present Letter cast

some doubts on whether a rather poor agreement of bare
SPEs, obtained within EDF approaches, can be improved
by taking into account PVC corrections. We do not find any
rationale in favor of adding these corrections on top of
results obtained for functionals that were adjusted to
observations without these corrections. In our study, we
obtained results for functionals refitted after adding the
PVC corrections. Although this was done within the
approximation based on linear regression, one could not
improve the results below the lower limit of about 1 MeV
rms deviation.
When fitting the coupling constants, we did not consider

any other observables, such as nuclear masses or radii.
Therefore, the obtained results simply illustrate the maxi-
mum possible improvement that can potentially be obtained
in the description of the empirical SPEs. Taking into
account other observables can only worsen the results
obtained for SPEs, which makes the conclusions of our
Letter even stronger. Certainly, PVC effects are needed for
a correct description of fragmented single-particle strengths
[44]; however, for a detailed description of values of SPEs,
they do not lead to any dramatic improvement.
In our opinion, the burden of improving the current

limited level of agreement of nuclear spectroscopic proper-
ties with data is still on the definition and form of the used
EDFs [13], and not on higher-order perturbative correc-
tions. Indeed, one cannot reasonably expect that many-
body corrections can compensate for the rather rudimentary
forms of EDFs currently in use. The search for better EDFs,
which is currently pursued in various directions, remains an
important priority for the field.

Private communications from H. Grawe, J. Dudek, and
M.-G. Porquet, related to the empirical values of SPEs, are
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