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We report an exact solution of 2- and 3-point functions of chiral primary fields in SUð2Þ N ¼ 2

super-Yang-Mills theory coupled to four hypermultiplets. It is shown that these correlation functions
are nontrivial functions of the gauge coupling, obeying differential equations which take the form of the
semi-infinite Toda chain. We solve these equations recursively in terms of the Zamolodchikov metric that
can be determined exactly from supersymmetric localization on the four-sphere. Our results are verified
independently in perturbation theory with a Feynman diagram computation up to 2 loops. This is a short
version of a companion paper that contains detailed technical remarks, additional material, and aspects of
an extension to the SUðNÞ gauge group.
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Introduction.—Quantum field theories often possess
exactly marginal deformations along which the data of
the theory (spectrum, correlation functions, etc.) may
change continuously. A characteristic well-studied example
in four dimensions is the N ¼ 4 super-Yang-Mills (SYM)
theory. In this case an exactly marginal deformation
interpolates between weak coupling (where the theory
can be analyzed with standard perturbation theory) and
strong coupling (where standard perturbative methods are
inadequate). It is of great interest to develop nonperturba-
tive techniques that allow us to describe (analytically)
properties of the theory at any value of the marginal
couplings.
Supersymmetric theories are an opportune context for

the development of such techniques. They often possess
special sectors that exhibit dynamics with nontrivial, but
exactly computable, coupling constant dependence. An
exact solution in these sectors can provide useful intuition,
or a solid starting point, towards an analysis of the more
general properties of the theory.
In this Letter, we will concentrate on a specific example

of a four-dimensional conformal field theory with N ¼ 2
supersymmetry: N ¼ 2 SYM theory with gauge group
SUð2Þ coupled to 4 hypermultiplets in the fundamental
representation (in short, SUð2Þ N ¼ 2 superconformal
QCD, or simply SCQCD). By definition, this theory is
invariant under 8 real supercharges. The special sector of
interest is comprised of (scalar) superconformal chiral
primary fields ϕI (to be specified explicitly in a moment)
annihilated by the four supercharges of right chirality. The
conjugate fields annihilated by the supercharges of left

chirality will be denoted as ϕI .N ¼ 2 superconformal field
theories (SCFTs) are also invariant under the global
SUð2ÞR ×Uð1ÞR R symmetry. The chiral primaries ϕI
are singlets of the SUð2ÞR, but have nonzero Uð1ÞR charge
R [1]. Their scaling dimension Δ obeys the relation
Δ ¼ R=2. (For antichiral primaries Δ ¼ −ðR=2Þ).
It is well known that the operator product expansion

(OPE) of chiral primary fields is nonsingular

ϕIðxÞϕJð0Þ ¼ CK
IJϕKð0Þ þ � � � . ð1Þ

It forms a ring structure known as the chiral ring [2]. Two
important sets of data in the chiral ring are the 2-point
functions

hϕIðxÞϕJð0Þi ¼
gIJ
jxj2Δ ð2Þ

and the 3-point functions

hϕIðxÞϕJðyÞϕKðzÞi ¼
CIJK

jx − yjΔIJ;K jx − zjΔIK;J jy − zjΔJK;I
;

ð3Þ

where ΔIJ;K ¼ ΔI þ ΔJ − ΔK . There is an obvious relation
between the OPE and 2- and 3-point function coeffi-
cients CIJK ¼ CL

IJgLK .
In our example there is a single exactly marginal

deformation labeled by a complex parameter τ (the com-
plexified gauge coupling constant). The 2- and 3-point
function coefficients gIJ, CIJK are nontrivial functions of τ,
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receiving corrections at all orders in perturbation theory as
well as from instanton effects. (The scaling dimensions ΔI
are fixed by the nonrenormalized Uð1ÞR charge RI as
described above). We will present exact formulae for these
data combining methods of supersymmetric localization (in
particular, Refs. [3,4]) with certain exact relations between
chiral ring correlation functions [5] that are four-dimensional
analogs of the tt� equations in two dimensions [6,7].We have
verified the resulting expressions with an independent
computation in perturbation theory up to 2 loops [8].
We point out that analogous correlation functions in

N ¼ 4 SYM theory are nonrenormalized [9–19] and are
therefore trivial functions of the gauge coupling that can be
determined at tree level. N ¼ 2 dynamics is clearly more
interesting and the results in this Letter indicate that there is
a considerable amount of new data that are tractable
analytically compared to previous knowledge. The tech-
niques presented here are useful in N ¼ 2 theories with
exactly marginal deformations beyond the specific example
analyzed in this Letter. A detailed explanation of the
general properties of these techniques and extensions to
more general examples are discussed in a companion
paper [8].
SUð2Þ N ¼ 2 SCQCD.—The main example of this

Letter is N ¼ 2 SYM theory with gauge group SUð2Þ
coupled to 4 hypermultiplets (at the origin of the Coulomb
branch). This is a gauge theory whose field content
includes (a) the N ¼ 2 vector multiplet fields, namely,
the gauge boson Aμ, a complex scalar field φ and four Weyl
fermions (all in the adjoint representation), and (b) the 4
N ¼ 2 hypermultiplets that are comprised of 4 complex
bosons and 8 Weyl fermions (all in the fundamental
representation). The global symmetry group is SOð8Þ×
SUð2ÞR ×Uð1ÞR. SOð8Þ is a flavor symmetry rotating the
hypermultiplets. The standard Yang-Mills Lagrangian of
this theory is summarized, for example, in appendix B of
Ref. [8] whose conventions we are also following here.
The single exactly marginal coupling of this theory is the

complexified Yang-Mills coupling τ¼ðθ=2πÞþð4πi=g2YMÞ,
where θ is the θ angle and gYM is the Yang-Mills coupling.
We will work in conventions where the infinitesimal
exactly marginal deformation of the action takes the form

S → Sþ δτ

4π2

Z
d4xOτðxÞ þ

δτ

4π2

Z
d4xOτðxÞ; ð4Þ

where the Δ ¼ 4 operators Oτ, Oτ are descendants of
Δ ¼ 2 (anti)chiral primary fields

Oτ ¼ Q4ϕ2; Oτ ¼ Q4ϕ2: ð5Þ
The notation Q4ϕ2 is shorthand notation for the nested
(anti)commutator of four supercharges of left chirality. The
Lorentz and SUð2ÞR indices of the supercharges are
combined to give a Lorentz and SUð2ÞR singlet. ϕ2 is
the lowest dimension N ¼ 2 chiral primary field

ϕ2 ¼
π

8
Tr½φ2�: ð6Þ

The overall normalization in Eq. (5) is fixed so that
hOτðxÞOτð0Þi ¼ ∇2

x∇2
xhϕ2ðxÞϕ2ð0Þi.

The chiral ring of the SUð2Þ theory can be freely
generated by the chiral primary field ϕ2 by repeated
multiplication. The explicit checks reported below verify
the consistency of this picture. Wewill normalize the generic
chiral primary ϕ2n ∝ ðTr½φ2�Þn by requiring the OPE

ϕ2ðxÞϕ2nð0Þ ¼ ϕ2nþ2ð0Þ þ � � � . ð7Þ

This choice fixes all the nonvanishing OPE coefficients

C2ðnþmÞ
2n2m ¼ 1 ð8Þ

and the normalization of all the higher order chiral primaries
ϕ2n ðn > 1Þ which are multitrace.
To summarize, the (chiral ring) sector of interest in this

Letter is comprised of a sequence of fields ϕ2n with scaling
dimensions Δ2n ¼ 2n.
We will denote the 2-point functions of these fields as

hϕ2nðxÞϕ2nð0Þi ¼
g2nðτ; τÞ
jxj4n : ð9Þ

The 2-point function coefficients g2n (as well as the
corresponding 3-point function coefficients C2m2n2mþ2n)
are nontrivial functions of the complexified coupling τ that
we will determine exactly.
Notice that g2 is directly related to the coefficient G2 of

the 2-point function hOτðxÞOτð0Þi. G2 is the so-called
Zamolodchikov metric on the space of exactly marginal
couplings. For N ¼ 2 theories this space is known to be a
complex Kähler manifold. Hence, (specializing to the case
at hand) there is a scalar function K, the Kähler potential,
such that

G2 ¼ ∂τ∂τK ¼ 192g2: ð10Þ

Exact correlation functions.—Reference [5] formulated
a set of exact relations between the OPE and 2-point
function coefficients for general four-dimensional N ¼ 2
theories with exactly marginal directions. These relations,
which take the form of systems of differential equations on
the marginal couplings, are direct analogs of the tt�
equations in two-dimensional N ¼ ð2; 2Þ superconformal
theories derived in Refs. [6,7] with the method of topo-
logical-antitopological fusion. Reference [5] derived such
relations in four dimensions with the judicious use of
superconformal Ward identities.
Applying the general tt� equations of Ref. [5] in the case

of interest here in the so-called holomorphic gauge and
the related above-mentioned normalization conventions
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(see Ref. [8] for an exposition of all the pertinent details),
we arrive at the following relations for the 2-point function
coefficients g2n (9):

∂τ∂τg2n ¼
g2nþ2

g2n
−

g2n
g2n−2

− g2; ð11Þ

where n ¼ 1; 2;… and g0 ¼ 1 by definition. By unitarity
all g2n > 0 and this infinite sequence of differential
equations can be recast as the more familiar semi-infinite
Toda chain

∂τ∂τqn ¼ eqnþ1−qn − eqn−qn−1 ; n ¼ 2;… ð12Þ

by setting g2n ¼ exp ½qn − log ðK=192Þ�. K is the Kähler
potential in Eq. (10) and the factor of 192 follows from the
normalization conventions of the previous section.
It is interesting to ask what is the general solution of the

system [Eq. (11)] subject to positivity over the entire space
of marginal couplings and whether positivity and some
other “boundary conditions” from perturbation theory at
weak coupling can fix the solution uniquely. We will not try
to answer this question here. Instead, wewill use the system
of equations [Eq. (11)] recursively, writing

g2nþ2¼g2n∂τ∂τ logg2nþ
g22n
g2n−2

þg2g2n; n¼1;2;…;

ð13Þ

to determine all the higher 2-point functions g2n ðn > 1Þ
from the lowest one g2.
Exact 2-point functions: Recent work [4] has deter-

mined the exact quantumKähler potential ofN ¼ 2 SCFTs
in terms of the partition function ZS4 of the theory on the
four-sphere S4. The precise relation is

K ¼ 192 logZS4 : ð14Þ

Notice that the marginal operators Oτ are normalized
differently in Ref. [4], i.e., Ohere ¼ 4Othere. This explains
the factor 192 ¼ 12 × 4 × 4 as opposed to 12 in Ref. [4].
Combining with Eq. (10) we obtain

g2 ¼ ∂τ∂τZS4 : ð15Þ

For the SUð2Þ SCQCD theory there is a well-studied
integral expression for the sphere partition function ZS4 that
has been determined using supersymmetric localization [3]

ZS4ðτ; τÞ ¼
Z

∞

−∞
dae−4πImðτÞa2ð2aÞ2

×
Hð2iaÞHð−2iaÞ
½HðiaÞHð−iaÞ�4 jZinstða; τÞj2: ð16Þ

HðzÞ ¼ Gð1þ zÞGð1 − zÞ in terms of the Barnes G func-
tion [20], and Zinst is the Nekrasov partition function [21]

that incorporates the contribution from all the instanton
sectors. For further details we refer the reader to Ref. [3].
Combining the expressions in Eqs. (13), (15), and (16),

we are able to determine recursively any of the 2-point
function coefficients g2n in terms of higher derivatives of
the S4 partition function.
Exact 3-point functions: The nonvanishing 3-point

function coefficients C
2m2n2ðmþnÞ follow immediately from

the general relation CIJK ¼ CL
IJgLK, Eq. (8), and the above

solution of the 2-point function coefficients

C
2m2n2ðmþnÞ ¼ C2ðmþnÞ

2m2n g2ðmþnÞ ¼ g2ðmþnÞ: ð17Þ

Notice that, although the normalization conventions of
the previous sections are very convenient for the above
computations, in conformal field theory it is common to
work instead with orthonormal primary operators ϕ̂2n for

which hϕ̂2nðxÞϕ̂2nð0Þi ¼ δn;n=jxj2Δ. In these alternative
conventions, the 2-point function coefficients are trivial
but the OPE coefficients are nontrivial and

Ĉ2m2n2mþ2n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2mþ2n

g2mg2n

r
: ð18Þ

More general extremal correlators: With a conformal
transformation of the form x0μ ¼ xμ − yμ=jx − yj2 it is
possible to recast the general extremal correlator

hϕ2m1
ðx1Þ…ϕ2mn

ðxnÞϕ2mðyÞi; ð19Þ

with m ¼ P
n
l¼1mn as

hϕ2m1
ðx01Þ…ϕ2mn

ðx0nÞϕ2mð∞Þi
jx1 − yj4m1 � � � jxn − yj4mn

: ð20Þ

Using superconformal Ward identities one can prove that
the correlation function on the numerator of Eq. (20) is
independent of the positions xi. Consequently, it can be
evaluated in any particular limit; in particular, we can make
use of the above known OPEs and 2-point functions g2n to
determine the exact τ dependence of such extremal corre-
lators as well, as explained in more detail in Ref. [8].
Predictions for perturbation theory.—We can use the

above results to make very specific predictions for the weak
coupling, gYM ≪ 1, expansion of 2- and 3-point functions
in the chiral ring. As an illustration, here we present explicit
examples in the 0-instanton and 1-instanton sectors.
0-instanton sector: Working with the perturbative

(0-instanton) part of the S4 partition function [Eq. (16)]

Zð0Þ
S4

¼
Z

∞

−∞
dae−4πImðτÞa2ð2aÞ2Hð2iaÞHð−2iaÞ

½HðiaÞHð−iaÞ�4 ð21Þ

our exact formulas provide, e.g., for the first three chiral
primaries, the perturbative expansions
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gð0Þ2 ¼ 3

8

1

ðImτÞ2−
135ζð3Þ
32π2

1

ðImτÞ4þ
1575ζð5Þ
64π3

1

ðImτÞ5þ�� � ;

gð0Þ4 ¼ 15

32

1

ðImτÞ4−
945ζð3Þ
64π2

1

ðImτÞ6þ
7875ζð5Þ
64π3

1

ðImτÞ7þ�� � ;

gð0Þ6 ¼ 315

256

1

ðImτÞ6−
76545ζð3Þ
1024π2

1

ðImτÞ8

þ1677375ζð5Þ
2048π3

1

ðImτÞ9þ��� . ð22Þ

The superscript 0 denotes that this is the 0-instanton
contribution. We wrote down contributions only up to 3
loops, but it is easy to go to any desired order. We have

verified the validity of the predicted gð0Þ2n , for all values of
the positive integer n, with an independent computation in
perturbation theory up to 2 loops [8]. This provides an
independent 2-loop perturbative check of the tt� Eqs. (13),
but also a check of the recent proposal of Ref. [4] that
identifies the quantum Kähler potential of N ¼ 2 theories
with the S4 partition function.
Equivalently, in the alternative basis with orthonormal

2-point functions Eq. (18) provides very specific results for
the nontrivial 3-point function coefficients Ĉ2m2n2mþ2n. As
an illustration, the first few coefficients are

Ĉð0Þ
224 ¼

ffiffiffiffiffi
10

3

r �
1−

9ζð3Þ
2π2

1

ðImτÞ2 þ
525ζð5Þ
8π3

1

ðImτÞ3 þ � � �
�
;

Ĉð0Þ
246 ¼

ffiffiffi
7

p �
1−

9ζð3Þ
π2

1

ðImτÞ2 þ
675ζð5Þ
4π3

1

ðImτÞ3 þ � � �
�
;

Ĉð0Þ
268 ¼

ffiffiffiffiffi
12

p �
1−

27ζð3Þ
2π2

1

ðImτÞ2 þ
2475ζð5Þ

8π3
1

ðImτÞ3 þ � � �
�
:

ð23Þ

1-instanton sector: As an example, we consider the 1-
instanton contribution to the S4 partition function [Eq. (16)]

Zð1Þ
S4 ¼ cos θ exp

�
−
8π2

g2YM

��
−

3

4πðImτÞ3=2
�

×

�
1 −

1

8πImτ
−

45ζð3Þ
16π2ðImτÞ2

þ 105(ζð3Þ þ 10ζð5Þ)
128π3ðImτÞ3 þ � � �

�
ð24Þ

and from this we obtain expansions of g2n in the 1-instanton
sector

gð1Þ2 ¼ cos θ exp

�
−
8π2

g2YM

��
3

8ðImτÞ2 þ
3

16πðImτÞ3

−
135ζð3Þ

32π2ðImτÞ4 þ � � �
�
; ð25Þ

gð1Þ4 ¼ cos θ exp

�
−
8π2

g2YM

��
15

16ðImτÞ4 þ
15

32πðImτÞ5

−
945ζð3Þ

32π2ðImτÞ6 þ � � �
�
: ð26Þ

If desired, it is straightforward to extend these results to
higher n, higher instanton number l, and higher order in the
perturbative expansion around any given instanton sector. It
would be interesting to confirm them with an independent
perturbative computation in the general l-instanton sector.
Moreover, it would be interesting to verify the expected
positivity of the resulting expressions at general n.
Outlook.—We reported exact nonperturbative formulae

for 2- and 3-point functions of chiral primary fields in the
SUð2ÞN ¼ 2 SCQCD theory. A detailed exposition of the
employed technology, of the perturbative 2-loop check, as
well as an extension to the N ¼ 2 SCQCD theory with
more general SUðNÞ gauge group can be found in the
companion paper [8]. The general SUðNÞ case exhibits a
much more involved chiral ring structure with additional
generators and the set of independent data needed to
determine a complete solution is currently unclear.
Nevertheless, we find preliminary signs of an underlying
structure [8] that is worth investigating further.
Regardless of the technical possibility to obtain the full

solution in more general cases, the real merit of the
approach proposed in this Letter lies in the organized use
of superconformal Ward identities that reduce the general
problem considerably. This reduction combined with the
use of data obtained independently, e.g. with localization,
provides a promising route towards new highly nontrivial
results in four-dimensional N ¼ 2 theories.
Beyond the SUðNÞ SCQCD case it would be interesting

to extend the application of the 4d tt� equations to other
known classes of N ¼ 2 theories and to determine general
conditions (e.g., positivity constraints) that fix their sol-
ution uniquely. Results along these lines are expected to
have wider implications. For example, we have already
seen that the explicit knowledge of 2- and 3-point functions
implies also the exact form of general extremal correlation
functions in the chiral ring. In a different direction one can
envision using these results as input in a more general
bootstrap program in N ¼ 2 SCFTs aiming to determine
larger classes of correlation functions, spectral data etc.
Clearly, several possibilities remain to be explored.
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