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We report an exact solution of 2- and 3-point functions of chiral primary fields in SU(2) N =2
super-Yang-Mills theory coupled to four hypermultiplets. It is shown that these correlation functions
are nontrivial functions of the gauge coupling, obeying differential equations which take the form of the
semi-infinite Toda chain. We solve these equations recursively in terms of the Zamolodchikov metric that
can be determined exactly from supersymmetric localization on the four-sphere. Our results are verified
independently in perturbation theory with a Feynman diagram computation up to 2 loops. This is a short
version of a companion paper that contains detailed technical remarks, additional material, and aspects of

an extension to the SU(N) gauge group.
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Introduction.—Quantum field theories often possess
exactly marginal deformations along which the data of
the theory (spectrum, correlation functions, etc.) may
change continuously. A characteristic well-studied example
in four dimensions is the ' = 4 super-Yang-Mills (SYM)
theory. In this case an exactly marginal deformation
interpolates between weak coupling (where the theory
can be analyzed with standard perturbation theory) and
strong coupling (where standard perturbative methods are
inadequate). It is of great interest to develop nonperturba-
tive techniques that allow us to describe (analytically)
properties of the theory at any value of the marginal
couplings.

Supersymmetric theories are an opportune context for
the development of such techniques. They often possess
special sectors that exhibit dynamics with nontrivial, but
exactly computable, coupling constant dependence. An
exact solution in these sectors can provide useful intuition,
or a solid starting point, towards an analysis of the more
general properties of the theory.

In this Letter, we will concentrate on a specific example
of a four-dimensional conformal field theory with N = 2
supersymmetry: A/ =2 SYM theory with gauge group
SU(2) coupled to 4 hypermultiplets in the fundamental
representation (in short, SU(2) N =2 superconformal
QCD, or simply SCQCD). By definition, this theory is
invariant under 8 real supercharges. The special sector of
interest is comprised of (scalar) superconformal chiral
primary fields ¢; (to be specified explicitly in a moment)
annihilated by the four supercharges of right chirality. The
conjugate fields annihilated by the supercharges of left
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chirality will be denoted as ¢;. N’ = 2 superconformal field
theories (SCFTs) are also invariant under the global
SU(2)g x U(1)g R symmetry. The chiral primaries ¢,
are singlets of the SU(2), but have nonzero U(1), charge
R [1]. Their scaling dimension A obeys the relation
A = R/2. (For antichiral primaries A = —(R/2)).

It is well known that the operator product expansion
(OPE) of chiral primary fields is nonsingular

¢1(x)p,(0) = CHpg (0) + - - - (1)

It forms a ring structure known as the chiral ring [2]. Two
important sets of data in the chiral ring are the 2-point
functions

— g =
(b1(x)h;(0)) = =55 (2)
[
and the 3-point functions

_ CIJE
o ‘x — y|AH.K|x — Z|A1K,J |y — Z|AJK.I ’

(3)

where A;; ¢ = A; + A; — Ag. There is an obvious relation
between the OPE and 2- and 3-point function coeffi-
cients C,;z = Chg,%-

In our example there is a single exactly marginal
deformation labeled by a complex parameter z (the com-
plexified gauge coupling constant). The 2- and 3-point
function coefficients 957> C, /K are nontrivial functions of 7,

<¢,(x)¢1(y)$,((z)>
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receiving corrections at all orders in perturbation theory as
well as from instanton effects. (The scaling dimensions A;
are fixed by the nonrenormalized U(1l), charge R; as
described above). We will present exact formulae for these
data combining methods of supersymmetric localization (in
particular, Refs. [3,4]) with certain exact relations between
chiral ring correlation functions [5] that are four-dimensional
analogs of the ##* equations in two dimensions [6,7]. We have
verified the resulting expressions with an independent
computation in perturbation theory up to 2 loops [8].

We point out that analogous correlation functions in
N =4 SYM theory are nonrenormalized [9-19] and are
therefore trivial functions of the gauge coupling that can be
determined at tree level. N' = 2 dynamics is clearly more
interesting and the results in this Letter indicate that there is
a considerable amount of new data that are tractable
analytically compared to previous knowledge. The tech-
niques presented here are useful in A/ = 2 theories with
exactly marginal deformations beyond the specific example
analyzed in this Letter. A detailed explanation of the
general properties of these techniques and extensions to
more general examples are discussed in a companion
paper [8].

SU(2) N =2 SCQCD.—The main example of this
Letter is A/ =2 SYM theory with gauge group SU(2)
coupled to 4 hypermultiplets (at the origin of the Coulomb
branch). This is a gauge theory whose field content
includes (a) the N/ =2 vector multiplet fields, namely,
the gauge boson A, a complex scalar field ¢ and four Weyl
fermions (all in the adjoint representation), and (b) the 4
N =2 hypermultiplets that are comprised of 4 complex
bosons and 8 Weyl fermions (all in the fundamental
representation). The global symmetry group is SO(8)x
SU(2)g X U(1)g. SO(8) is a flavor symmetry rotating the
hypermultiplets. The standard Yang-Mills Lagrangian of
this theory is summarized, for example, in appendix B of
Ref. [8] whose conventions we are also following here.

The single exactly marginal coupling of this theory is the
complexified Yang-Mills coupling 7= (0/27)+ (47i/ G%y)»
where 6 is the 0 angle and gy is the Yang-Mills coupling.
We will work in conventions where the infinitesimal
exactly marginal deformation of the action takes the form

ot 4 ot 4 A
S - S+4n_2/d xO,(x) +4ﬂ2/d xO.(x), (4)

where the A =4 operators O,, O, are descendants of
A =2 (anti)chiral primary fields

Or = Q4¢27 51 = §4$2~ (5)

The notation Q*p, is shorthand notation for the nested
(anti)commutator of four supercharges of left chirality. The
Lorentz and SU(2), indices of the supercharges are
combined to give a Lorentz and SU(2), singlet. ¢, is
the lowest dimension N = 2 chiral primary field

b = S Trlo?) (©)

The overall normalization in Eq. (5) is fixed so that

(O:(x)0,(0)) = ViVi{hs(x)1(0)).

The chiral ring of the SU(2) theory can be freely
generated by the chiral primary field ¢, by repeated
multiplication. The explicit checks reported below verify
the consistency of this picture. We will normalize the generic
chiral primary ¢, o (Tr[@?])" by requiring the OPE

$2(x)2,(0) = 2y 2(0) +---. (7)

This choice fixes all the nonvanishing OPE coefficients
o =1 (8)

and the normalization of all the higher order chiral primaries
¢5, (n > 1) which are multitrace.

To summarize, the (chiral ring) sector of interest in this
Letter is comprised of a sequence of fields ¢,, with scaling
dimensions A,, = 2n.

We will denote the 2-point functions of these fields as

(on (B (0)) = E227:7). 9)

|x|4n

The 2-point function coefficients ¢,, (as well as the
corresponding 3-point function coefficients C,, , 5——")
are nontrivial functions of the complexified coupling z that
we will determine exactly.

Notice that g, is directly related to the coefficient G, of
the 2-point function (O,(x)O,(0)). G, is the so-called
Zamolodchikov metric on the space of exactly marginal
couplings. For A/ = 2 theories this space is known to be a
complex Kéhler manifold. Hence, (specializing to the case
at hand) there is a scalar function K, the Kihler potential,
such that

G2 = 8,[8;’C = 19292 (10)

Exact correlation functions.—Reference [5] formulated
a set of exact relations between the OPE and 2-point
function coefficients for general four-dimensional A/ = 2
theories with exactly marginal directions. These relations,
which take the form of systems of differential equations on
the marginal couplings, are direct analogs of the #*
equations in two-dimensional A" = (2,2) superconformal
theories derived in Refs. [6,7] with the method of topo-
logical-antitopological fusion. Reference [5] derived such
relations in four dimensions with the judicious use of
superconformal Ward identities.

Applying the general #7* equations of Ref. [5] in the case
of interest here in the so-called holomorphic gauge and
the related above-mentioned normalization conventions
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(see Ref. [8] for an exposition of all the pertinent details),
we arrive at the following relations for the 2-point function
coefficients gy, (9):

Gony2 G2
ara?QZn =T 2 925 (1 1)
9on 9on—2

where n = 1,2, ... and gy = 1 by definition. By unitarity
all g,, >0 and this infinite sequence of differential
equations can be recast as the more familiar semi-infinite
Toda chain

815‘?qn = ednt1n — en=dn-1 n=2,... (12)
by setting g,, = exp [¢, —log (K/192)]. K is the Kihler
potential in Eq. (10) and the factor of 192 follows from the
normalization conventions of the previous section.

It is interesting to ask what is the general solution of the
system [Eq. (11)] subject to positivity over the entire space
of marginal couplings and whether positivity and some
other “boundary conditions” from perturbation theory at
weak coupling can fix the solution uniquely. We will not try
to answer this question here. Instead, we will use the system
of equations [Eq. (11)] recursively, writing

2

g
9on+2 = anara? 1Og 92n + q 2

n=1,2,...,

(13)

to determine all the higher 2-point functions g,, (n > 1)
from the lowest one g,.

Exact 2-point functions: Recent work [4] has deter-
mined the exact quantum Kéhler potential of A" = 2 SCFTs
in terms of the partition function Zg of the theory on the
four-sphere S*. The precise relation is

+ 929,
2n—2

K =192log Zg. (14)

Notice that the marginal operators O, are normalized
differently in Ref. [4], i.e., Opere = 4Oihere- This explains
the factor 192 = 12 x 4 x 4 as opposed to 12 in Ref. [4].
Combining with Eq. (10) we obtain

G = 0,0 Zs. (15)

For the SU(2) SCQCD theory there is a well-studied
integral expression for the sphere partition function Z g that
has been determined using supersymmetric localization [3]

Zu(r,7) = /00 dae~ Mm@ (24)?

I;o(Zia)H(—Zia)

[H(ia)H(—ia)]4 |Zinst(a’7)|2' (16)

H(z) = G(1 4+ z)G(1 — z) in terms of the Barnes G func-
tion [20], and Z;, is the Nekrasov partition function [21]

that incorporates the contribution from all the instanton
sectors. For further details we refer the reader to Ref. [3].
Combining the expressions in Egs. (13), (15), and (16),
we are able to determine recursively any of the 2-point
function coefficients g,, in terms of higher derivatives of
the $* partition function.
Exact 3-point functions:

function coefficients CZman follow immediately from

the general relation C,,z = C},gLE, Eq. (8), and the above
solution of the 2-point function coefficients

The nonvanishing 3-point

2(m+n
C2m2112(m+n) - C2£n2: )92(m+n) = 92(m+n)- (17)

Notice that, although the normalization conventions of
the previous sections are very convenient for the above
computations, in conformal field theory it is common to

work instead with orthonormal primary operators q?)z” for

which (¢, (x)2i(0)) = 8,5/|x|**. In these alternative
conventions, the 2-point function coefficients are trivial
but the OPE coefficients are nontrivial and

> 192m+2n
C2m2n2m+2n = G . (18)
mY2n

More general extremal correlators: With a conformal
transformation of the form x* = x* — y#/|x —y|?* it is
possible to recast the general extremal correlator

<¢2m1 (x1).. Do, (xn)%n—z(y)% (19)
with m = )"%_, m, as

<¢2ml (xll)"'¢2mn (X’n)$zm(oo)> '

ey =y x, =yl

(20)

Using superconformal Ward identities one can prove that
the correlation function on the numerator of Eq. (20) is
independent of the positions x;. Consequently, it can be
evaluated in any particular limit; in particular, we can make
use of the above known OPEs and 2-point functions g,,, to
determine the exact 7 dependence of such extremal corre-
lators as well, as explained in more detail in Ref. [8].
Predictions for perturbation theory.—We can use the
above results to make very specific predictions for the weak
coupling, gy, < 1, expansion of 2- and 3-point functions
in the chiral ring. As an illustration, here we present explicit
examples in the O-instanton and l-instanton sectors.
O-instanton sector: Working with the perturbative
(O-instanton) part of the S* partition function [Eq. (16)]
79 = / ® dae-trm@ g LCIH(=2ia) ),
o [H(ia)H(—ia)]*

our exact formulas provide, e.g., for the first three chiral
primaries, the perturbative expansions

251601-3



PRL 113, 251601 (2014)

PHYSICAL REVIEW LETTERS

week ending
19 DECEMBER 2014

o_3 1 13(3) 1 1s75((5) 1
2 T8 me)? T 3222 (Imo)* | 640 (Imo) |
o 15 1 945:(3) 1 7875¢(5) 1
94" = i 2 6 3 7

32 (Imz) 647> (Imr) 647> (Imr)
o 315 1 76545((3) 1

% T256(Ime)0 10242° (Ime)®
1677375¢(5) 1
20487°  (Imz)°

(22)

The superscript 0 denotes that this is the 0O-instanton
contribution. We wrote down contributions only up to 3
loops, but it is easy to go to any desired order. We have
verified the validity of the predicted gé?l), for all values of
the positive integer n, with an independent computation in
perturbation theory up to 2 loops [8]. This provides an
independent 2-loop perturbative check of the ¢#* Egs. (13),
but also a check of the recent proposal of Ref. [4] that
identifies the quantum Kiihler potential of N = 2 theories
with the $* partition function.

Equivalently, in the alternative basis with orthonormal
2-point functions Eq. (18) provides very specific results for
the nontrivial 3-point function coefficients szan' As
an illustration, the first few coefficients are

o 10/ 9(@) 1 sse(s) | )
€24 = 3 <1 27% (Imz)? 87>  (Imr)? )
L675¢(5) 1 )

Coio = \/7<1 #* (Imz)? 4z° (Ime)?

. 27¢(3) 1
cg?gzx/ﬁ(l— £3)

27% (Imr)? 87°

(Imz)3
(23)

I-instanton sector:  As an example, we consider the 1-
instanton contribution to the $* partition function [Eq. (16)]

2
(1) 8 3
Z., = 0 —— | -———=
5 converp ( g%/M) ( 4 (Im1)3/2>

L] 45¢(3)
x [ ~ 8zlmz  167%(Imr)?
105(£(3) + 10£(5))
1282 (Ime)* }

(24)

and from this we obtain expansions of g,, in the 1-instanton
sector

(l)—coseex —8—712 3 + 3
2= P\ 2,/ [8(me)? " 16x(Ime)?

135¢(3)
SRS

(25)

4750(5) 1, )

72 15 15
@) [16(Imr)4 * 32z(Imz)3
945¢(3)
© 327%(Ime)° A } '

gil) = cosfexp <— 8
(26)

If desired, it is straightforward to extend these results to
higher n, higher instanton number #, and higher order in the
perturbative expansion around any given instanton sector. It
would be interesting to confirm them with an independent
perturbative computation in the general Z-instanton sector.
Moreover, it would be interesting to verify the expected
positivity of the resulting expressions at general n.

Outlook.—We reported exact nonperturbative formulae
for 2- and 3-point functions of chiral primary fields in the
SU(2) N =2 SCQCD theory. A detailed exposition of the
employed technology, of the perturbative 2-loop check, as
well as an extension to the AN/ =2 SCQCD theory with
more general SU(N) gauge group can be found in the
companion paper [8]. The general SU(N) case exhibits a
much more involved chiral ring structure with additional
generators and the set of independent data needed to
determine a complete solution is currently unclear.
Nevertheless, we find preliminary signs of an underlying
structure [8] that is worth investigating further.

Regardless of the technical possibility to obtain the full
solution in more general cases, the real merit of the
approach proposed in this Letter lies in the organized use
of superconformal Ward identities that reduce the general
problem considerably. This reduction combined with the
use of data obtained independently, e.g. with localization,
provides a promising route towards new highly nontrivial
results in four-dimensional N' = 2 theories.

Beyond the SU(N) SCQCD case it would be interesting
to extend the application of the 4d tt* equations to other
known classes of N/ = 2 theories and to determine general
conditions (e.g., positivity constraints) that fix their sol-
ution uniquely. Results along these lines are expected to
have wider implications. For example, we have already
seen that the explicit knowledge of 2- and 3-point functions
implies also the exact form of general extremal correlation
functions in the chiral ring. In a different direction one can
envision using these results as input in a more general
bootstrap program in A" =2 SCFTs aiming to determine
larger classes of correlation functions, spectral data etc.
Clearly, several possibilities remain to be explored.

We would like to thank M. Buican, J. Drummond, M.
Kelm, W. Lerche, B. Pioline, M. Rosso, D. Tong, C. Vafa,
C. Vergu, C. Vollenweider, and A. Zhedanov for useful
discussions. The work of M. B. is supported in part by a
grant of the Swiss National Science Foundation. The work
of V.N. was supported in part by European Union’s 7th
Framework Programme under grant agreements (FP7-
REGPOT-2012-2013-1) No. 316165, PIF-GA-2011-
300984, the EU program “Thales” MIS 375734 and was

251601-4



PRL 113, 251601 (2014)

PHYSICAL REVIEW LETTERS

week ending
19 DECEMBER 2014

also cofinanced by the EU (European Social Fund,
ESF) and Greek national funds through the Operational
Program “Education and Lifelong Learning” of the
National Strategic Reference Framework (NSRF) under
“Funding of proposals that have received a positive
evaluation in the 3rd and 4th Call of ERC Grant
Schemes.” K.P. would like to thank the Royal
Netherlands Academy of Sciences (KNAW).

“baggiom@ethz.ch
Tniarchos@physics.uoc.gr
ikyriakos.papadodimas@cern.ch
On leave from the Centre for Theoretical Physics,
University of Groningen, Netherlands.

[1] F. A. Dolan and H. Osborn, Ann. Phys. (N.Y.) 307, 41
(2003).

[2] W. Lerche, C. Vafa, and N. P. Warner, Nucl. Phys. B324,
427 (1989).

[3] V. Pestun, Commun. Math. Phys. 313, 71 (2012).

[4] E. Gerchkovitz, J. Gomis, and Z. Komargodski, J. High
Energy Phys. 11 (2014) 001.

[5] K. Papadodimas, J. High Energy Phys. 08 (2010) 118.

[6] S. Cecotti and C. Vafa, Nucl. Phys. B367, 359 (1991).

[7] S. Cecotti and C. Vafa, Phys. Rev. Lett. 68, 903 (1992).

[8] M. Baggio, V. Niarchos,
arXiv:1409.4212.

[9] S. Lee, S. Minwalla, M. Rangamani, and N. Seiberg, Adv.
Theor. Math. Phys. 2, 697 (1998).

[10] E. D’Hoker, D.Z. Freedman, and W. Skiba, Phys. Rev. D
59, 045008 (1999).

[11] E. D’Hoker, D. Z. Freedman, S. D. Mathur, A. Matusis, and
L. Rastelli, in Extremal Correlators in the AdS/CFT
Correspondence, edited by M. A. Shifman, The Many Faces
of the Superworld (World Scientific, Singapore, 2000),
pp- 332-360.

[12] K. A. Intriligator, Nucl. Phys. B551, 575 (1999).

[13] K. A. Intriligator and W. Skiba, Nucl. Phys. B559, 165
(1999).

[14] B. Eden, P.S. Howe, and P. C. West, Phys. Lett. B 463, 19
(1999).

[15] A. Petkou and K. Skenderis, Nucl. Phys. B561, 100 (1999).

[16] P.S. Howe, C. Schubert, E. Sokatchev, and P. C. West, Nucl.
Phys. B571, 71 (2000).

[17] P.J. Heslop and P. S. Howe, Nucl. Phys. B626, 265 (2002).

[18] A.Basu, M. B. Green, and S. Sethi, J. High Energy Phys. 09
(2004) 045.

[19] M. Baggio, J. de Boer, and K. Papadodimas, J. High Energy
Phys. 07 (2012) 137.

[20] E. W. Barnes, Phil. Trans. R. Soc. A 196, 265 (1901).

[21] N. A. Nekrasov, Adv. Theor. Math. Phys. 7, 831 (2003).

and K. Papadodimas,

251601-5


http://dx.doi.org/10.1016/S0003-4916(03)00074-5
http://dx.doi.org/10.1016/S0003-4916(03)00074-5
http://dx.doi.org/10.1016/0550-3213(89)90474-4
http://dx.doi.org/10.1016/0550-3213(89)90474-4
http://dx.doi.org/10.1007/s00220-012-1485-0
http://dx.doi.org/10.1007/JHEP11(2014)001
http://dx.doi.org/10.1007/JHEP11(2014)001
http://dx.doi.org/10.1007/JHEP08(2010)118
http://dx.doi.org/10.1016/0550-3213(91)90021-O
http://dx.doi.org/10.1103/PhysRevLett.68.903
http://arXiv.org/abs/1409.4212
http://dx.doi.org/10.1103/PhysRevD.59.045008
http://dx.doi.org/10.1103/PhysRevD.59.045008
http://dx.doi.org/10.1016/S0550-3213(99)00242-4
http://dx.doi.org/10.1016/S0550-3213(99)00430-7
http://dx.doi.org/10.1016/S0550-3213(99)00430-7
http://dx.doi.org/10.1016/S0370-2693(99)00705-4
http://dx.doi.org/10.1016/S0370-2693(99)00705-4
http://dx.doi.org/10.1016/S0550-3213(99)00514-3
http://dx.doi.org/10.1016/S0550-3213(99)00768-3
http://dx.doi.org/10.1016/S0550-3213(99)00768-3
http://dx.doi.org/10.1016/S0550-3213(02)00023-8
http://dx.doi.org/10.1088/1126-6708/2004/09/045
http://dx.doi.org/10.1088/1126-6708/2004/09/045
http://dx.doi.org/10.1007/JHEP07(2012)137
http://dx.doi.org/10.1007/JHEP07(2012)137
http://dx.doi.org/10.1098/rsta.1901.0006
http://dx.doi.org/10.4310/ATMP.2003.v7.n5.a4

