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We analyze the role of entanglement among probes and with external ancillas in quantum metrology. In
the absence of noise, it is known that unentangled sequential strategies can achieve the same Heisenberg
scaling of entangled strategies and that external ancillas are useless. This changes in the presence of noise;
here we prove that entangled strategies can have higher precision than unentangled ones and that the
addition of passive external ancillas can also increase the precision. We analyze some specific noise models
and use the results to conjecture a general hierarchy for quantum metrology strategies in the presence
of noise.
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Quantum metrology [1,2] describes parameter estima-
tion techniques that, by sampling a systemN times, achieve
precision better than the 1=

ffiffiffiffi
N

p
scaling of the central limit

theorem of classical strategies. Different schemes can
beat such a limit (Fig. 1): (i) entanglement-free classical
schemes where N=n independent probes sense the system
sequentially, thus rescaling the parameter—and hence the
error—by n for each probe [3,4]; (ii) entangled parallel
schemes that employ a collective entangled state of the N
probes that sample the system in parallel [5–8]; (iii) passive
ancilla schemes, where the N probes may also be entangled
with noiseless ancillas; (iv) active ancilla-assisted schemes
(comprising all of the previous cases) that also encompass
all schemes employing feedback, where adaptive proce-
dures are described as unitary operations acting on the
probes and ancillas between the sensing and the final
measurement [9,10].
In the noiseless case, classical single-probe sequential

schemes (i) can attain the same 1=N precision as parallel
entangled ones (ii) at the expense of an N-times longer
sampling time, whereas passive and active ancilla schemes
(iii) and (iv) offer no additional advantage [9,11]. In this
Letter we analyze the performance of these strategies in
the presence of specific noise models and use the results
to conjecture a general hierarchy of protocols. Noise in
quantum metrology has been extensively studied—e.g., see
Refs. [12–25]—but the main focus was on comparing
parallel-entangled with parallel-unentangled strategies
[12–14] which do not match in the noiseless case. Single-
probe states are typically less sensitive to decoherence and
simpler to prepare than entangled states, so it would seem [3]
that the sequential strategy should be preferable in the
presence of noise. Our first result is that this is not true:
in the presence of noise (here we analyze dephasing, erasure,
and damping), entanglement among probes increases the
precision over the sequential strategy, even though it fails to
do so in the noiseless case, and we provide a quantitative

characterization of this advantage. Our second result is to
show that (ii) and (iii) are, in general, asymptotically
inequivalent by demonstrating that (iii) is strictly better than
(ii) for amplitude-damping noise. Our third result is to show
that the bounds to parallel-entangled strategies (ii) and (iii)
derived for a large class of noise models [13,14] also apply
asymptotically in N to the most general strategies (iv),
suggesting that active ancilla-based schemes are not helpful
in increasing the precision in the presence of noise [26].
Finally, we use our results to conjecture a general hierarchy
of quantum metrology schemes valid in the presence of any
uncorrelated noise:

FIG. 1. Quantum metrology strategies. The maps Λφ encode
the parameter φ to be estimated. (i) sequential scheme: Λφ acts n
times sequentially onN=n input probes ρ (this is an entanglement-
free classical scheme); (ii) entangled parallel scheme: an entangled
state of N probes ρN goes through N maps Λφ in parallel;
(iii) passive ancilla scheme: the N probes are also entangled
with M noiseless ancillas; (iv) active ancilla-assisted scheme:
the action ofN channelsΛφ is interspersed with arbitrary unitaries
Ui representing interactions of the probe with ancillas. [All of the
other schemes can be derived from (iv) choosing swap or identity
unitaries Ui.]
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ðiÞ ¼ ðiiÞ ¼ ðiiiÞ ¼ ðivÞ decoherence free;

ðiÞ < ðiiÞ ¼ ðiiiÞ ¼ ðivÞ dephasing; erasure;

ðiÞ < ðiiÞ < ðiiiÞ¼? ðivÞ amplitude-damping;

ðiÞ≤? ðiiÞ ≤ ðiiiÞ¼? ðivÞ general conjecture: ð1Þ

Namely, in general, sequential strategies (i) are worse [27]
than parallel-entangled ones (ii), which might in some cases
be improved by entangling the probes with noiseless ancillas
(iii), but there is no additional asymptotic gain from using
active ancilla-aided schemes (iv). Question marks represent
our conjectures and the equality symbol “¼” should be
interpreted as asymptotically equivalent, though in the
decoherence-free case as well as in the case of equality
between (ii) and (iii) for erasure and dephasing noise, this
is a strict equality for any finite N. We emphasize that even
in the cases where our bounds are equivalent, the related
strategies may not be if the bounds are not achievable, which
must be verified on a case-by-case basis.
Schemes that employ quantum-error correction [28–30]

are in general of type (iv), so our claim might be
misinterpreted as saying that error correction schemes
are useless. Instead, what we will say is simply that their
asymptotic precision can also be achieved through (pos-
sibly unknown) strategies of types (ii) and (iii); e.g., the
noise models considered in [28–30] allow for decoupling
the decoherence from the parameter sensing transformation
at short evolution times; so, the bounds derived for (ii) and
(iii) also allow for the possibility of better than 1=

ffiffiffiffi
N

p
scaling [31].
The outline of the Letter is as follows. We first introduce

the quantum Cramer-Rao bound for the strategies (i)–(iv),
and derive some general bounds for their quantum Fisher
information. We then prove a gap in precision between (i)
and (ii), the equivalence of (ii), (iii), and (iv) in case of
dephasing and erasure noise, and finally the inequivalence
of (ii) and (iii) for amplitude damping.
The map Λφ that writes the parameter φ on the state ρ of

the probe acts as

ρφ ¼ ΛφðρÞ ¼
X
k

Kφ
kρK

φ†
k ; ð2Þ

with Kφ
k being the Kraus operators. The precision of an

estimation strategy can be gauged through the root-mean-
square error Δφ of the measurement of φ. It is lower
bounded by the quantum Cramer-Rao bound [2,5–8],
Δφ ≥ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
νFðρφÞ

p
, where ν is the number of times the

estimation is repeated and FðρÞ is the quantum Fisher
information (QFI) of a state ρ [2,5,6]. This bound is
guaranteed to be achievable, in general, only asymptoti-
cally for ν → ∞, but in case of noise models with QFI
scaling linearly with the number of probe particles N it is

also tight for a single shot setting, ν ¼ 1, provided one
considers the asymptotics, N → ∞ [32].
The QFIs for the schemes (i)–(iv) are defined as

FðiÞ ¼ max
ρ;n

Ff½Λn
φðρÞ�⊗N=ng; ð3Þ

FðiiÞ ¼ max
ρN

F½Λ⊗N
φ ðρNÞ�; ð4Þ

FðiiiÞ ¼ max
ρM

F½Λ⊗N
φ ⊗ 1⊗MðρMÞ�; ð5Þ

FðivÞ ¼ max
ρM;fUig

F½UNΛφ…U1ΛφðρMÞ�; ð6Þ

where ρ denotes an input state of a single probe and we
look for the optimal sequential-parallel splitting of the N
probes in n channels for strategies (i), ρN is the global state
ofN probes in (ii), and ρM denotes the global probes-ancilla
input state in (iii) and (iv). In the formula for FðivÞ, the Ui’s
act on all the probes while Λφ without loss of generality
may be assumed to act on the first probe only. Because of
the convexity of the QFI, the optimal input probes are pure.
The hierarchy conjecture (1) should be understood in

terms of corresponding inequalities on QFIs: FðiiÞ ≤ FðiiiÞ is
obvious as (ii) is a special case of (iii)—the inequality may
be strict, as is the case of the amplitude damping discussed
below; FðiiiÞ ≤ FðivÞ is also easy to show since taking swap
operators Ui in (iv), one can obtain the action of parallel
channels on an entangled input state (iii). It is less trivial to
determine the cases when inequalities turn to equalities and
the corresponding schemes become asymptotically equiv-
alent. Finally, theFðiÞ ≤ FðiiÞ inequality is more challenging
to prove, in general, but we show that it holds strictly for
dephasing, erasure, or amplitude damping, proving the
advantage of parallel schemes [33]. We also present general
tools to derive bounds for (iv) and show that they are
asymptotically equivalent to known bounds for (ii) and (iii).
Moreover, since these bounds are saturable for dephasing
and erasure using (ii) schemes, there is no asymptotic
advantage of (iv) over the simpler (ii) and (iii) in
these cases.
Calculating QFI explicitly for large N is, in general, not

possible, but bounds to it are known. The most versatile
ones employ the nonuniqueness of the Kraus representation
[13,14,34]; Λφ is unchanged if one replaces Kφ

k with
~Kφ
k ¼ P

lu
φ
klK

φ
l , where uφ is an arbitrary φ-dependent

unitary matrix. This produces bounds on the maximal
QFI of a transformation Λφ in terms of minimization over
the possible Kraus representations [14,34]:

max
ρ

F½ΛφðρÞ� ≤ 4min
fKφ

k g
∥
X
k

_Kφ†
k

_Kφ
k∥; ð7Þ

where _Kφ
k ¼ ð∂Kφ

k =∂φÞ and ∥ · ∥ is the operator norm.
The above inequality becomes an equality provided one
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replaces Λφ with a trivially extended channel Λφ ⊗ 1,
which represents the possibility of entangling the probes
with an ancilla [34]. This immediately implies that the
bounds derived for (ii) will also be valid for (iii).
We now recall the known bounds for Fðii=iiiÞ and derive a

new bound for FðivÞ using the minimization of Eq. (7).
Bounds for (ii) and (iii) are equivalent (as argued above),
so we use a combined notation (ii/iii). For any Kraus
representation Kφ

k of a single channel Λφ, one can write
a product Kraus representation for channels Λ⊗N

φ ,
U1Λφ…UNΛφ corresponding to schemes (ii/iii) and (iv),

respectively: Kφðii=iiiÞ
k ¼Kφ

kN
⊗ �� �Kφ

k1
; KφðivÞ

k ¼UNK
φ
kN
…

U1K
φ
k1
, where k ¼ fk1;…; kNg.

For (ii/iii) the minimization (7) gives a simple bound
expressed in terms of single channel Kraus operators [34]:

Fðii=iiiÞ ≤ 4min
Kφ

k

N∥α∥þ NðN − 1Þ∥β∥2 ≤ 4 min
Kφ

k ;β¼0
N∥α∥;

ð8Þ

with α≡P
k
_Kφ†
k

_Kφ
k and β≡P

k
_Kφ†
k Kφ

k . The last inequal-
ity in (8) may be used without a loss of efficiency for large
N provided there is a Kraus representation for which β ¼ 0
(it exists for many noisy maps), which immediately implies
linear QFI scaling with N [14,34]. The minimization in
Eq. (8) can be easily performed using the semidefinite
programming [14,35].
The derivation of the general bound for (iv) again

uses (7) and a product Kraus representation. It gives (see
the Supplemental Material [36] for details)

FðivÞ ≤ 4min
Kφ

k

N∥α∥þ NðN − 1Þ∥β∥ð∥α∥þ ∥β∥þ 1Þ

≤ 4 min
Kφ

k ;β¼0
N∥α∥: ð9Þ

Importantly, the asymptotic form of the bound is equivalent
to Eq. (8), the one derived for (ii/iii) if β ¼ 0 is feasible.
It is worth noting that less powerful but more intuitive

methods based on the concept of minimization over classical
or quantum simulations of the channel [14,35,39], originally
proposed to derive bounds for (ii/iii), can also be applied to
(iv). In the classical-and-quantum-simulation method [39]
one formally replaces the action of Λφ with a parameter-
independent map Λ and a parameter-dependent ancillary
system σφ, so that for any ρ,ΛφðρÞ ¼ Λðρ ⊗ σφÞ. Since QFI
is nonincreasing under parameter-independent maps,
F(Λðρ ⊗ σφÞ) ≤ FðσφÞ, which for the schemes (ii/iii)
implies that F½Λ⊗N

φ ðρNÞ�≤F½Λ⊗NðρN ⊗σ⊗N
φ Þ�≤NFðσφÞ

[14,35,39]. It was not noticed before that the same method
can be applied to (iv), as the scheme can be rewritten as one
black-box quantum operation ~Λ fed with σ⊗N

φ (see Fig. 2),
resulting in

Fðii-ivÞ ≤ Nmin
Λ;σφ

FðσφÞ: ð10Þ

This bound often coincides with the asymptotic bound in
Eq. (8), e.g., in the case of erasure or dephasing [14,35] (but
not amplitude damping; see Ref. [35]).
We now analyze dephasing, erasure, and amplitude-

damping noise. Let j0i, j1i be the eigenbasis of the phase
encoding unitary Uφ ¼ j0ih0j þ eiφj1ih1j. We assume that
the dephasing is defined with respect to the same basis, so
the corresponding Kraus operators read

K0 ¼ 1

�
1þ ffiffiffi

η
p
2

�
1=2

; K1 ¼ σz

�
1 − ffiffiffi

η
p
2

�
1=2

; ð11Þ

where 1 ¼ j0ih0j þ j1ih1j, σz ¼ j0ih0j − j1ih1j, and ffiffiffi
η

p
is

the decoherence rate of the off-diagonal terms in the density
matrix. Since both Kraus operators commute with the
unitary Uφ, we can separate the noise map from the
sampling and consider a total evolution of the form

ρφ ¼ ΛφðρÞ ¼
X
k

KkUφρUφ
†Kk

†: ð12Þ

Instead, for erasure noise the probe is untouched with
probability η while with probability 1 − η its state is
replaced with one in a subspace orthogonal to the subspace
where the estimation takes place (again the noise map and
Uφ commute and the map can be written in a Kraus form;
see the Supplemental Material [36]). The erasure map is
isomorphic to optical loss applied to a state with a fixed
number of distinguishable photons with transmission coef-
ficient η in both arms of an interferometer [14,40]. Finally,
Kraus operators for amplitude damping read

K0 ¼
�
1 0

0
ffiffiffi
η

p
�
; K1 ¼

�
0

ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p

0 0

�
; ð13Þ

where η represents the probability of a particle switching
from the excited to the ground state.
We start with calculating FðiÞ to assess the performance

of entanglement-free strategies. In the case of erasure,
since in the noiseless case the optimal probe state is

FIG. 2. Depiction of quantum channel simulation applied to
the most general adaptive scheme (iv). It shows that, for
a given simulation Λ, σφ, the QFI of the scheme is bounded
by FðivÞ ¼ F½ΛðρM ⊗ σ⊗N

φ Þ� ≤ NFðσφÞ.
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jþi ¼ ðj0i þ j1iÞ= ffiffiffi
2

p
, while the probability of an erasure

event does not depend on the state itself, the optimal input
state remains the same and yields F½ΛφðjþihþjÞ� ¼ η. For
dephasing and amplitude damping, the situation is less
obvious but the optimal probe state is again jþi and the QFI
is again η [35]; see the Supplemental Material [36] for a
simple proof in the case of dephasing.
To calculate FðiÞ it remains to optimize the number n of

sequential maps for each probe; see Fig. 1. Using nmaps in
a sequence increases the overall phase rotation n times at
the cost of increasing the decoherence parameter η to ηn,
whereas considering parallel channels simply adds their
QFIs. Therefore, Ff½Λn

φðρþÞ�⊗N=ng ¼ N=n · n2ηn. This is
the same formula which would be obtained for (ii) with
the input N00N state [17,41–43]. Treating 1 ≤ n ≤ N
as a continuous parameter [17], the optimal value n ¼
½lnð1=ηÞ�−1, provided e−1 ≤ η ≤ e−1=N , which corresponds
to [44]

FðiÞ ¼ N
e lnð1=ηÞ : ð14Þ

For erasure and dephasing, we use the inequality (8) to
calculate (see Supplemental Material [36])

Fðii=iiiÞ
Q ≲ Nη

1 − η
: ð15Þ

Importantly, this bound is asymptotically saturable for both
models with a scheme (ii) where the optimal input probes
are prepared in spin-squeezed states for atomic systems
[13,15], or in squeezed states of light for optical imple-
mentations [14,40,45].
In order to inspect the benefits of entangled-based

strategies over sequential ones, we plot in Fig. 3 the ratio

of formulas in Eqs. (15) and (14) as a function of η. Note
that the entanglement-enhancement factor is bounded by
bounded by exp(1), a result known in frequency estimation
schemes in the limit vanishing interrogation times [12,13],
which in our case corresponds to η → 1. We stress,
however, that in the noiseless case η ¼ 1, all four metrology
schemes perform equally well, achieving the Heisenberg
scaling. Finally, regarding scheme (iv), we note that since

the asymptotic bound on FðivÞ
Q coincides with the bound on

Fðii=iiiÞ
Q (as β ¼ 0) and the latter is asymptotically saturable

using (ii) for erasure and dephasing, this immediately
implies that there is no asymptotic benefit in using (iv)
in these cases.
One can also derive the corresponding bound for the

amplitude damping (see the Supplemental Material [36])

which reads Fðii=iiiÞ
Q ≲ 4Nη=ð1 − ηÞ. This bound, however,

is not tight for the (ii) strategies, which has been proven
recently in Ref. [46] using an alternative method based on
the calculus of variations—the actual tight bound for (ii)
in fact coincides with Eq. (15). This makes the case of
amplitude damping distinct from the other two and opens
up the possibility of proving the asymptotic benefits of
using the ancillas; see below.
Analyzing the role of ancillas, we have already shown

that they are useless in the case of dephasing and erasure.
Surprisingly, this not so in the case of the amplitude-
damping noise. In this case, as mentioned above and proven
in Ref. [46], bound (15) is tight for (ii). A numerical search
for optimal ancilla assisted strategies (iii) for the small
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FIG. 3. Advantage of entangled-based over entanglement-free
schemes for erasure, dephasing, and amplitude damping, quanti-
fied as an asymptotic ratio of achievable quantum QFIs as a
function of the decoherence parameter η. For η → 1 the ratio
approaches exp(1), but for the perfectly noiseless case η ¼ 1, the
advantage vanishes, which is depicted by a dot. In the case of
amplitude damping, a further improvement is possible (bounded
by a factor of 4) when using strategies (iii) and (iv) instead of (ii).
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FIG. 4. Comparison between the yield of the amplitude-damp-
ing channel with and without passive ancillas for exemplary
decoherence parameter η ¼ 0.5 as a function of the number N of
maps employed in the estimation: attainable QFI without ancillas,
strategy (ii) (black circles); attainable QFI with passive ancillas,
strategy (iii) (gray circles); asymptotically tight upper bound for
the QFI for (ii) strategies from Ref. [46] (dashed black line); our
universal bound for QFI for both passive (iii) and active (iv)
ancillas (dashed gray curve)—no strategy can achieve better
precision. The gray box emphasizes that for N ¼ 4, and hence
also asymptotically, the strategy (iii) can beat the bound for all
strategies of type (ii). (More details are in the Supplemental
Material [36].)
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number of probes whereN ≤ 4 gives a QFI that exceeds the
bound (15) for η≲ 0.5; see Fig. 4. Most importantly, this
advantage of strategy (iii) over (ii) will also be preserved in
the asymptotic limit since the bound (15) is linear in N
and the same linear gain can be achieved by simply
repeating the experiment, e.g., using the optimal 4 particle
strategy N=4 times. This gives a (numerical) proof that (ii)
is strictly less powerful than (iii) for amplitude damping.
In conclusion, we have presented a hierarchy for the

performance of quantum metrology in the presence of
dephasing, erasure, and amplitude-damping noise, and we
have illustrated a conjecture on how this hierarchy can be
extended to arbitrary noise models, based on new general
bounds. In this hierarchy, entanglement-free schemes
perform worse than entangled ones, and in some cases
schemes with passive ancillas perform better than unaided
ones, even though they are all equivalent in the noise-
less case.
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and Higher Education.

[1] V. Giovannetti, S. Lloyd, and L. Maccone, Science 306,
1330 (2004).

[2] V. Giovannetti, S. Lloyd, and L. Maccone, Nat. Photonics 5,
222 (2011).

[3] A. Luis, Phys. Rev. A 65, 025802 (2002).
[4] B. L. Higgins, D.W. Berry, S. D. Bartlett, H. M. Wiseman,

and G. J. Pryde, Nature (London) 450, 393 (2007).
[5] S. L. Braunstein, C. M. Caves, and G. J. Milburn, Ann.

Phys. (N.Y.) 247, 135 (1996).
[6] S. L. Braunstein and C. M. Caves, Phys. Rev. Lett. 72, 3439

(1994).
[7] C. W. Helstrom, Quantum Detection and Estimation Theory

(Academic Press, New York, 1976).
[8] A. S. Holevo, Probabilistic and Statistical Aspects of

Quantum Theory (North-Holland, Amsterdam, 1982).
[9] V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. Lett.

96, 010401 (2006).
[10] W. van Dam, G. M. D’Ariano, A. Ekert, C. Macchiavello,

and M. Mosca, Phys. Rev. Lett. 98, 090501 (2007).
[11] A. M. Childs, J. Preskil, and J. Renes, J. Mod. Opt. 47, 155

(2000).
[12] S. F. Huelga, C. Macchiavello, T. Pellizzari, A. Ekert, M.

Plenio, and J. Cirac, Phys. Rev. Lett. 79, 3865 (1997).
[13] B. M. Escher, R. L. de Matos Filho, and L. Davidovich,

Nat. Phys. 7, 406 (2011).
[14] R. Demkowicz-Dobrzański, J. Kolodynski, and M. Guta,

Nat. Commun. 3, 1063 (2012).
[15] D. Ulam-Orgikh and M. Kitagawa, Phys. Rev. A 64, 052106

(2001).
[16] A. Shaji and C. M. Caves, Phys. Rev. A 76, 032111 (2007).
[17] U. Dorner, R. Demkowicz-Dobrzanski, B. Smith, J.

Lundeen, W. Wasilewski, K. Banaszek, and I. Walmsley,
Phys. Rev. Lett. 102, 040403 (2009),

[18] J. Kolodynski and R. Demkowicz-Dobrzanski, Phys. Rev. A
82, 053804 (2010).

[19] S. Knysh, V. N. Smelyanskiy, and G. A. Durkin, Phys. Rev.
A 83, 021804 (2011).

[20] C. M. Caves, Phys. Rev. D 23, 1693 (1981).
[21] M. Xiao, L.-A. Wu, and H. J. Kimble, Phys. Rev. Lett. 59,

278 (1987).
[22] M. A.Rubin andS.Kaushik,Phys.Rev.A75, 053805 (2007).
[23] R. Demkowicz-Dobrzański, Laser Phys. 20, 1197 (2010).
[24] S. Alipour, M. Mehboudi, and A. T. Rezakhani, Phys. Rev.

Lett. 112, 120405 (2014).
[25] S. Alipour and A. T. Rezakhani, arXiv:1403.8033.
[26] Our claim is stronger than the one in Ref. [13] that if (ii)

and (iii) are limited by a 1=
ffiffiffiffi
N

p
precision scaling, so is (iv).

We derive an explicit bound for (iv) and show that it
asymptotically coincides with the bound for (ii) and (iii).

[27] They are equivalent in the noiseless case, however.
[28] E. M. Kessler, I. Lovchinsky, A. O. Sushkov, and M. D.

Lukin, Phys. Rev. Lett. 112, 150802 (2014).
[29] W. Dur, M. Skotiniotis, F. Fröwis, and B. Kraus, Phys. Rev.

Lett. 112, 080801 (2014).
[30] G. Arrad, Y. Vinkler, D. Aharonov, and A. Retzker, Phys.

Rev. Lett. 112, 150801 (2014).
[31] R. Chaves, J. B. Brask, M. Markiewicz, J. Kolodynski, and

A. Acin, Phys. Rev. Lett. 111, 120401 (2013).
[32] M. Jarzyna and R. Demkowicz-Dobrzański, arXiv:1407.4805

[New J. Phys. (to be published)].
[33] This claim may seem to contradict the one in

Refs. [41,42,47], where equivalence of the sequential and
parallel-entangled strategy is proven for dephasing. The
contradiction is only an apparent one, as no optimization
over the input state is performed there: only the response of
the channel is analyzed.

[34] A. Fujiwara and H. Imai, J. Phys. A 41, 255304 (2008).
[35] J. Kolodynski and R. Demkowicz-Dobrzański, New J. Phys.

15, 073043 (2013).
[36] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.113.250801, which in-
cludes Refs. [37,38], for further details on the results
presented here.

[37] K. Macieszczak, M. Fraas, and R. Demkowicz-Dobrzański,
New J. Phys. 16, 113002 (2014).

[38] K. Macieszczak, arXiv:1312.1356.
[39] K. Matsumoto, arXiv:1006.0300.
[40] R. Demkowicz-Dobrzański, M. Jarzyna, and J. Kolodynski,

arXiv:1405.7703 [Prog. Opt. (to be published)].
[41] A. Shaji and C. M. Caves, Phys. Rev. A 76, 032111 (2007).
[42] S. Boixo, C. M. Caves, A. Datta, and A. Shaji, Laser Phys.

16, 1525 (2006).
[43] L. Maccone, Phys. Rev. A 88, 042109 (2013).
[44] For completeness we should add that if η < e−1 we take

n ¼ 1, which gives F ¼ Nη, while for η > e−1=N we
take n ¼ N, which gives F ¼ N2ηN . Note that in the
asymptotic limit N → ∞ and η < 1, we can ignore the case
η > e−1=N .

[45] R. Demkowicz-Dobrzański, K. Banaszek, and R. Schnabel,
Phys. Rev. A 88, 041802(R) (2013).

[46] S. I. Knysh, E. H. Chen, and G. A. Durkin, arXiv:1402.0495.
[47] S. Boixo and C. Heunen, Phys. Rev. Lett. 108, 120402

(2012).

PRL 113, 250801 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

19 DECEMBER 2014

250801-5

http://dx.doi.org/10.1126/science.1104149
http://dx.doi.org/10.1126/science.1104149
http://dx.doi.org/10.1038/nphoton.2011.35
http://dx.doi.org/10.1038/nphoton.2011.35
http://dx.doi.org/10.1103/PhysRevA.65.025802
http://dx.doi.org/10.1038/nature06257
http://dx.doi.org/10.1006/aphy.1996.0040
http://dx.doi.org/10.1006/aphy.1996.0040
http://dx.doi.org/10.1103/PhysRevLett.72.3439
http://dx.doi.org/10.1103/PhysRevLett.72.3439
http://dx.doi.org/10.1103/PhysRevLett.96.010401
http://dx.doi.org/10.1103/PhysRevLett.96.010401
http://dx.doi.org/10.1103/PhysRevLett.98.090501
http://dx.doi.org/10.1080/09500340008244034
http://dx.doi.org/10.1080/09500340008244034
http://dx.doi.org/10.1103/PhysRevLett.79.3865
http://dx.doi.org/10.1038/nphys1958
http://dx.doi.org/10.1038/ncomms2067
http://dx.doi.org/10.1103/PhysRevA.64.052106
http://dx.doi.org/10.1103/PhysRevA.64.052106
http://dx.doi.org/10.1103/PhysRevA.76.032111
http://dx.doi.org/10.1103/PhysRevLett.102.040403
http://dx.doi.org/10.1103/PhysRevA.82.053804
http://dx.doi.org/10.1103/PhysRevA.82.053804
http://dx.doi.org/10.1103/PhysRevA.83.021804
http://dx.doi.org/10.1103/PhysRevA.83.021804
http://dx.doi.org/10.1103/PhysRevD.23.1693
http://dx.doi.org/10.1103/PhysRevLett.59.278
http://dx.doi.org/10.1103/PhysRevLett.59.278
http://dx.doi.org/10.1103/PhysRevA.75.053805
http://dx.doi.org/10.1134/S1054660X10090306
http://dx.doi.org/10.1103/PhysRevLett.112.120405
http://dx.doi.org/10.1103/PhysRevLett.112.120405
http://arXiv.org/abs/1403.8033
http://dx.doi.org/10.1103/PhysRevLett.112.150802
http://dx.doi.org/10.1103/PhysRevLett.112.080801
http://dx.doi.org/10.1103/PhysRevLett.112.080801
http://dx.doi.org/10.1103/PhysRevLett.112.150801
http://dx.doi.org/10.1103/PhysRevLett.112.150801
http://dx.doi.org/10.1103/PhysRevLett.111.120401
http://arXiv.org/abs/1407.4805
http://arXiv.org/abs/1407.4805
http://dx.doi.org/10.1088/1751-8113/41/25/255304
http://dx.doi.org/10.1088/1367-2630/15/7/073043
http://dx.doi.org/10.1088/1367-2630/15/7/073043
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.250801
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.250801
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.250801
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.250801
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.250801
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.250801
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.250801
http://dx.doi.org/10.1088/1367-2630/16/11/113002
http://arXiv.org/abs/1312.1356
http://arXiv.org/abs/1006.0300
http://arXiv.org/abs/1405.7703
http://dx.doi.org/10.1103/PhysRevA.76.032111
http://dx.doi.org/10.1134/S1054660X06110065
http://dx.doi.org/10.1134/S1054660X06110065
http://dx.doi.org/10.1103/PhysRevA.88.042109
http://dx.doi.org/10.1103/PhysRevA.88.041802
http://arXiv.org/abs/1402.0495
http://dx.doi.org/10.1103/PhysRevLett.108.120402
http://dx.doi.org/10.1103/PhysRevLett.108.120402

