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We present a new method to measure the work w performed on a driven quantum system and to sample
its probability distribution PðwÞ. The method is based on a simple fact that remained unnoticed until now:
Work on a quantum system can be measured by performing a generalized quantum measurement at a single
time. Such measurement, which technically speaking is denoted as a positive operator valued measure
reduces to an ordinary projective measurement on an enlarged system. This observation not only
demystifies work measurement but also suggests a new quantum algorithm to efficiently sample the
distribution PðwÞ. This can be used, in combination with fluctuation theorems, to estimate free energies
of quantum states on a quantum computer.
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Introduction.—For quantum systems the definition of
work is rather subtle. As work is not represented by a
Hermitian operator [1], it is not an ordinary quantum
observable. Therefore, work measurement is certainly atypi-
cal. It is widely believed that work can only be measured by
performing energy measurements at two times [1–4].
Instead, here we show that work can be measured at a
single time by means of a very general class of quantum
measurements which is denoted as a “positive operator
valued measure” (or POVM) [5,6]. This type of generalized
measurements is standard in quantum optics, quantum
metrology, quantum information, etc. [5]. In fact, they define
the most general set of questions to which quantum
mechanics can assign probabilities. In general, they are
such that (a) the number of outputs may be larger than the
dimensionality of the space of states and (b) the states of the
system after recording different outcomes of the measure-
ment are not orthogonal. POVMs can always be realized as
ordinary projective measurements on an enlarged system
[5,6]. Thus, we show that, contrary to the common lore,
work can be measured at a single time, that its probability
distribution can be efficiently sampled, and that work is a
magnitude with which other systems can directly couple.
Interest on work measurement in classical and quantum

systems blossomed after the discovery of fluctuation
theorems, the most significant result of statistical mechan-
ics in decades [7,8]. Notably, Jarzynski identity establishes
that for any nonequilibrium process, the probability PðwÞ
to detect work w contains the information required to
compute free energy differences between equilibrium
states. This has been used to evaluate free energies for
classical systems at the nanoscale [9]. In the quantum
regime, there have been proposals to determine PðwÞ by
measuring energy at two times with cold ions [10], to use
properties of optical spectra to evaluate PðwÞ [11], to
perform many intermediate measurements on smaller

subsystems [12], to adopt alternative strategies for driven
two level systems [13], etc. Recently, the use of Ramsey
interferometry has been suggested to estimate the character-
istic function of PðwÞ [14,15]. This method is based on the
well-known scattering algorithm that estimates the average
of any unitary operators [16]. This was later generalized for
quantum open systems [17–19] and implemented in NMR
experiments [20].
The method we present here is the only one that directly

samples PðwÞ by means of a projective measurement at a
single time. By virtue of this fact, quantum coherence is
destroyed only at that final time. Until then, the evolution is
unitary. For this reason, this scheme can be used to study
the role of quantum coherence in thermodynamical proc-
esses [21,22]. Our results helps to demystify work meas-
urement for quantum systems. As we show, every value of
workw can be coherently recorded in the state of a quantum
register (an auxiliary system), which can then affect the fate
of any other system, including the original one. Thus,
although work is not represented by a Hermitian operator, it
shares the essential properties of standard observables.
Last, but not least, we show that our results motivate a
novel quantum algorithm that, when executed in a quantum
computer, would estimate free energies exploiting the
efficient sampling of PðwÞ.
The nonexistence of a Hermitian work operator [1] is a

consequence of the relation between work and energy
differences. As the number of possible values of work w ¼
Ef − Ei is typically larger than the dimension of the space
of states, a Hermitian operator representing work cannot
exist. This does not imply that work is not measurable.
Quite the opposite, work can be measured using the
following strategy: Consider a system with initial state
ρðt0Þ, which is driven from an initial Hamiltonian H ¼
HðtiÞ to a final one ~H ¼ HðtfÞ. The results of energy
measurements at times ti and tf are eigenvalues ofH and ~H
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satisfyingHjϕni ¼ Enjϕni and ~Hj ~ϕmi ¼ ~Emj ~ϕmi. In every
instance work is defined as w ¼ ~Em − En, which is dis-
tributed with probability

PðwÞ ¼
X
n;m

pnpm;nδ(w − ð ~Em − EnÞ); ð1Þ

where pn ¼ hϕnjρðt0Þjϕni is the probability to obtain the
energy En and pm;n ¼ jh ~ϕmjUf;ijϕnij2 is the transition
probability between energy eigenstates when the system
is driven by the evolution operator Uf;i ¼ Uðtf; t0Þ. From
Eq. (1), we can derive the identity

R
dwPðwÞ expð−βwÞ ¼P

n;mpnpm;n exp ( − βð ~Em − EnÞ). For a thermal initial
state, ρðt0Þ ¼ expð−βHÞ=Z0, the remarkable identity
derived first in Refs. [4,7] follows: hexpð−βwÞi ¼
~Z=Z ¼ expð−βΔFÞ, where F is the Helmholtz free energy.
Work measurement as a generalized measurement.—We

can rewrite Eq. (1) as PðwÞ ¼ Tr½ρWðwÞ� where
WðwÞ ¼

X
n;m

pm;nδðw − Em;nÞjϕnihϕnj; ð2Þ

with Em;n ≡ ð ~Em − EnÞ. Operators WðwÞ define a positive
operator valued measure as they form a set of non-negative
operators which decompose the identity as

R
dwWðwÞ ¼ I.

The operatorsWðwÞ are not orthogonal since the number of
values that w can take is larger than the dimension of the
Hilbert space. A POVM defines the most general type of
quantum measurement one can perform. Neumark’s
theorem [5] establishes that any POVM can be realized
as a projective measurement on an enlarged system.
Applying this observation for the case of work measure-
ment, we conclude that it is always possible to design an
apparatus such that (i) it produces an output w with
probability PðwÞ, and (ii) when w is recorded, the system
is prepared in a state ρw (that depends on ρ, w, and on the
measurement implementation). There is not a unique
method to implement a given POVM. Here, we present
a simple strategy that can be used to evaluate work. For this
purpose, we can couple the system S with an auxiliary
system A in such a way that A gets entangled with S
keeping a coherent record of the energy at two times. To do
this, S and A must interact twice through an entangling
interaction described by the Hamiltonian HI ¼ λH ⊗ p̂,
where λ is a constant and p̂ is the generator of translations
between the states jwi of A. In the simplest case we can
consider A with a continuous degree of freedom, where
fjwi; w ∈ Rg is a basis of its space of states. The evolution
operator UI ¼ expð−iHItÞ is such that

UIðjϕni ⊗ jw ¼ 0iÞ ¼ jϕni ⊗ jw ¼ Eni; ð3Þ

with t ¼ 1=λ in appropriate units. Then, we drive the
system with the operator UE ¼ Uf;i ¼ Uðtf; tiÞ. Finally,
a new entangling interaction is applied. In summary, we
apply the unitary sequence UIEI ¼ ~UIUEU

†
I [with

~UI ¼ expð−iλ ~H ⊗ p̂tÞ]. The resulting evolution trans-
forms the initial product state jΨðt0Þi¼jϕ0i⊗jw¼0i into
the final entangled state

jΨfi ¼
X
n;m

h ~ϕmjUEjϕnihϕnjϕ0ij ~ϕmi ⊗ jw ¼ Em;ni: ð4Þ

At this stage we measureA. The probability to findA in the
state jwi is PðwÞ ¼ hΨfjðI ⊗ jwihwjÞjΨfi. It is simple to
show that PðwÞ is precisely the distribution given in Eq. (1).
The state after detecting work w is ρw ¼ AwρA

†
w=PðwÞ.

Here, Aw is such that WðwÞ ¼ A†
wAw, PðwÞ ¼ Tr(ρWðwÞ)

and is given as

Aw ¼
X
n;m

δðw − Em;nÞh ~ϕmjUEjϕnij ~ϕmihϕnj: ð5Þ

Noticeably, contrary to what happens in the standard
two-time measurement scheme, the final state ρw is not
an eigenstate of the final Hamiltonian.
Thus, we described a method to measure work, which is

such that the outcome w is generated with probability PðwÞ,
preparing the system in one of the nonorthogonal states ρw.
In fact, although work is not a Hermitian operator, it can be
measured with an ordinary POVM.
It is interesting to notice that the sequence of operations

UIEI ¼ ~UIUEU
†
I has been realized in a recent experiment.

The interaction UI is precisely the one realized in a Stern
Gerlach (SG) apparatus when the spin (S) degrees of
freedom interact with the motional (A) degrees of freedom
of a particle when it enters an inhomogeneous magnetic
field. Then, the momentum of the particle is shifted by an
amount that depends on the projection of the spin along
the field. The magnitude of the shift depends on the field
gradient and on the interaction time (controlled by the
velocity of the particle). To realizeUIEI we need a sequence
of two SG apparatuses with a spin driving field in between.
Notably, this was done in a recent experiment [23] where
SG type interactions were used to create coherent super-
positions of momentum wave packets of an atomic beam.
This remarkable experiment was done using an atom chip
manipulating a falling cloud of 87Rb atoms obtained from a
BEC. The SG interaction UI was implemented using a
gradient pulse generated by coils in the chip. The gradient
acts as a beam splitter and, as a consequence the atomic
cloud splits into two pieces that move with different
momenta, depending on their internal (Zeeman) state. As
demonstrated in the experiment [23], the atoms behave as
two-level systems and, after splitting the atomic cloud, the
coils in the chip can generate radio frequency pulses
coherently driving transitions between the Zeeman sub-
levels jF;mFi ¼ j2; 2i and j2; 1i. This implements the
operator UE, the second step of the UIEI sequence. Finally,
as shown in Ref. [23], a new UI interaction can be applied
to split the wave packet for a second time. As a result, four
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atomic clouds are produced, whose densities were mea-
sured by recording the shadow of the atoms in a resonant
absorption experiment, tuned to an appropriate transition.
Here, we simply stress that a recent experiment performed

with a different purpose [23], can be interpreted as realiza-
tion of the work measurement method presented above. In
that case, the initial and final Hamiltonians are defined by the
gradient pulses (and are proportional to the interaction times)
while the driving field is determined by the intermediate
radio frequency pulses. Each of the four spots observed in
the final image correspond to one of the four results of the
POVM. Thus, the image in Ref. [23] directly reveals the
work distribution for a single driven spin-1=2 particle.
Different driving processes can be easily implemented.
Work estimation through phase estimation.—The above

method to measure work naturally translates into a quantum
algorithm that efficiently samples PðwÞ. The algorithm
would run on a quantum computer which could be used to
efficiently estimate moments of the work distribution. The
method is a variant of the phase estimation algorithm [6],
that plays a central role in many quantum algorithms. We
consider an N-qubit system S (DS ¼ 2N) and an M-qubit
ancilla A (D ¼ 2M determines the precision of the sam-
pling, as described below). We assume for simplicity that
the Hamiltonians H and ~H have bounded spectra that take
values between �EM=2 (this condition can be relaxed).
The algorithm below produces an m-bit string output x

with a probability PDðxÞ, which is a coarse-grained version
of the work distribution PðwÞ given in (1). Each integer x
identifies a certain amount of work through the identity
w ¼ 4EMx=D. Positive (negative) values of w correspond
to 0 < x ≤ D=4 (3D=4 ≤ x ≤ D − 1). The quantum algo-
rithm for sampling PðwÞ, shown in Fig. 1, has six steps:
(i) prepare the initial state jx ¼ 0i for A and ρ for S;
(ii) apply a quantum Fourier transform (QFT) on A
mapping jxi onto its conjugate state j~xi ¼ UQFTjxi ¼
1=

ffiffiffiffi
D

p P
D−1
t¼0 eið2πxt=DÞjti; (iii) apply the controlled operator

UI ¼
P

D−1
t¼0 jtihtj ⊗ U†t, where Ut ¼ expð−iπHt=4EMÞ;

(iv) apply the unitary driving UE over S; (v) apply another
controlled operation ~UI ¼

P
D−1
t¼0 jtihtj ⊗ ~Ut, with ~U ¼

expð−iπ ~Ht=4EMÞ; (vi) apply the inverse QFT in A and
measure its state in the jxi basis. The algorithm applies

the IEI sequence described above since the phase estima-
tion subroutine is nothing but a standard measurement
interaction.
The probability to detect x inA is PDðxÞ ¼

P
m;npnpm;n

jFDð4EMðx=DÞ − Em;nÞj2 where

jFDðzÞj2 ¼
���� 1D

XD−1

t¼0

e−iðπz=2EMÞt
����
2

¼ 1

D2

sin2ðπzD
4EM

Þ
sin2ð πz

4EM
Þ : ð6Þ

The distribution PDðxÞ is a coarse-grained version of the
true work distribution PðwÞ given in Eq. (1). Thus, PDðxÞ is
the convolution between PðwÞ and the filter function
defined in Eq. (6):

PDðxÞ ¼
Z

dw0
����FD

�
4EM

x
D
− w0

�����
2

Pðw0Þ: ð7Þ

The operators ADðxÞ defining the POVM are such that
PDðxÞ ¼ Tr(ρA†

DðxÞADðxÞ). They are also a convolution
between the exact expression Eq. (5) and a filter function,
i.e., ADðxÞ ¼

R
dw0FDð4EMðx=DÞ − w0ÞAðw0Þ.

It is simple to show that PDðxÞ rapidly approaches
PcgðxÞ, defined as the convolution of PðwÞ with a rec-
tangular function (which is unity for jwj ≤ 2EM=D and
zero otherwise). In fact, if PðwÞ is bounded, then it is
straightforward to show that jjPcg−PDjj∞¼OðjjPjj∞=DÞ.
Therefore, the difference between PDðxÞ and PcgðxÞ
decreases exponentially with the size of A. In Fig. 2 we
compare PcgðwÞ and PDðwÞ in a quenched process between
two random Hamiltonians H and ~H. As N ¼ 10, the
number of different values of w is 220. It is clear that even
for a small A (with M ¼ 5 qubits), the sampling of the
coarse-grained work distribution is highly accurate.
Estimating the free energy by sampling over the work

distribution.—Sampling the work distribution PðwÞ can be
useful to efficiently estimate its moments. In turn, using
Jarzynski identity, this can enable the estimation of the free
energy of quantum states. For this one needs the expect-
ation

R
dwPðwÞ expð−βwÞ. The above quantum algorithm

enables sampling the coarse-grained distribution PDðxÞ,
that can be used to efficiently estimate averages such as hwi
with an accuracy that depends on the number of sampling
points, K, as 1=

ffiffiffiffi
K

p
. So, for fixed precision (independent of

the dimensionality of the Hilbert space of S) this method is
efficient. In Fig. 2 we show the dependence of the estimated
ΔF with the number of times the distribution PDðxÞ is
sampled (for two random Hamiltonians of a system of N ¼
10 qubits). However, as it is the case for classical systems,
this strategy is not always efficient. In fact, efficiency
depends on the properties of PðwÞ, because negative values
of work, for which expð−βwÞ is large are typically under-
represented in the sampling process (a situation that
becomes worse at low temperatures).
Summary and comparison with previous work.—We

showed that work measurement is a generalized quantum

FIG. 1. Quantum circuit for the estimation of work probability
distribution. The initial state of the auxiliary M-qubit system is a
pure state ρA ¼ jψAihψAj with jψAi ¼ jx ¼ 0i. When the initial
state of the system is pure given by jϕi ¼ PDS

n¼1 cnjϕni then the
state of S and A just before the measurement is jΨiS;A ¼
1
D

PDS
n;m¼1 cnh ~ϕmjUEjϕni

P
t;xe

ið2π=DÞtðx−ðEm;n=4EMÞDÞjwi ⊗ j ~ϕmi.
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measurement (a POVM). This observation inspired a new
method to measure work by performing a projective
measurement on an enlarged system at a single time.
This method inspires a new interpretation of an existing
double SG experiment [23] and also a new quantum
algorithm to efficiently sample a coarse-grained version
of the work distribution PðwÞ. This algorithm could run in a
quantum computer producing an M-bit output x with a
probability PDðxÞ, which is such that PDðxÞ ¼ Pðw ∈ IxÞ
with an accuracy that grows exponentially with M. Here,
w ∈ Ix iff jw∓4EMx=Dj ≤ 2EM=D (where the ∓ sign
respectively corresponds to the cases 0 ≤ x ≤ D=4 and
3D=4 ≤ x ≤ D − 1). It is worth comparing this new
method with the evaluation of the characteristic function
of PðwÞ (χðsÞ) [14,15]. In that case, the estimation of the
expectation value of a single qubit operator is required for
each value of s. By doing this, one can efficiently estimate
work averages, which are obtained from derivatives of
χðsÞ at the origin. However, this method is not efficient to
sample PðwÞ, which is obtained as the Fourier transform
χðsÞ: To achieve the same precision we attain using M
qubits in A, the Ramsey method [14,15] would need to
evaluate χðsÞ in 2M points. Our method allows the efficient
estimation of global properties of PðwÞ (like periodicities)
and of the free energy for certain families of Hamiltonians.

Finally, we stress that in order to evaluate free energies,
our method requires a thermal equilibrium state ρ ¼
expð−βHÞ=Zβ as a resource (the same as in [14,15]).
However, this resource is not necessary if we use the
recently proposed quantum Metropolis algorithm that ena-
bles the efficient sampling over the Gibbs ensemble [24].
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FIG. 2 (color online). Top: Comparison of the coarse-grained
version of the exact probability distribution [given by Eq. (1)] with
the probability distribution generated by the algorithm [Eq. (7)].
For this example a system S of 10 qubits was used (therefore
giving 220 different possible values of work), while the ancilla A
was composed of only 5 qubits. Bottom: Free energy estimation
using Jarzynski’s equality and work values sampled from the exact
distribution, PðwÞ, and the distribution resulting from the algo-
rithm, PDðwÞ. The exact value of the free energy difference is also
shown, calculated as the ratio of the partition functions.
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