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Contextuality is a fundamental property of quantum theory and a critical resource for quantum
computation. Here, we experimentally observe the arguably cleanest form of contextuality in quantum
theory [A. Cabello et al., Phys. Rev. Lett. 111, 180404 (2013)] by implementing a novel method for
performing two sequential measurements on heralded photons. This method opens the door to a variety of
fundamental experiments and applications.
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Introduction.—The discovery that quantum probabilities
cannot be reproduced by a joint probability distribution
over a single probability space [1,2] implies that, in
quantum theory (QT), measurement outcomes cannot be
preassigned independently of the measurement “context”
(i.e., of the set of other compatible measurements that may
be carried out). Consequently, some quantum predictions of
QT cannot be reproduced by any noncontextual hidden
variable (NCHV) theory. In this sense, it is said that QT
exhibits contextuality.
Recently, contextuality has been identified as a critical

resource for universal quantum computation via “magic
state” distillation [3,4] and for measurement-based quan-
tum computation [5]. Contextuality is also the underlying
property behind nonlocality [6] and its applications, e.g.,
cryptography [7], reduction of communication complexity
[8], and randomness expansion [9].
All this makes the following question of fundamental

importance: What is the simplest form of contextuality and
how can it be observed? It has been recently pointed out
[10] that there is a form of contextuality that is analogous to
“the simplest and cleanest” [11] form of nonlocality found
by Hardy [12,13]. In this Letter we present the first
experimental observation of this form of contextuality.
Contextuality made simple.—The result in Ref. [10] can

be summarized as follows. Consider five imaginary boxes,
numbered from 1 to 5, which can be either full or empty.
Pjψið0; 1ji; jÞ denotes the joint probability in state jψi that
box i is empty and box j is full. Suppose that

Pjψið0; 1j1; 2Þ þ Pjψið0; 1j2; 3Þ ¼ 1; ð1aÞ

Pjψið0; 1j3; 4Þ þ Pjψið0; 1j4; 5Þ ¼ 1: ð1bÞ

Then, assuming that the outcomes are noncontextual, one
would lead to the conclusion that

Pjψið0; 1j5; 1Þ ¼ 0: ð2Þ

However, in QT conditions (1a) and (1b) occur while
prediction (2) fails. Instead of Eq. (2), QT predicts

Pjψið0; 1j5; 1Þ ¼
1

9
: ð3Þ

Why Hardy-like experiments are difficult.—As pointed
out by Mermin, although Hardy-like proofs “reign supreme
in the gedanken realm,” they “provide a rather weak basis
for a laboratory violation of the experimentally relevant
inequality” [14]. Each of these proofs is equivalent to a
violation of an inequality: the Clauser-Horne-Shimony-
Holt Bell inequality [15] in the case of Hardy’s proof
of nonlocality [14], and the Klyachko-Can-Binicioğlu-
Shumovsky (KCBS) noncontextuality (NC) inequality
[16] in the case of the Hardy-like proof of contextuality
[10]. The difficulty comes from the fact that the violation
is small compared to the violation that can be achieved
when the constraints of a Hardy-like proof are removed.
Consequently, the experimental observation of Hardy-like
nonlocality or contextuality requires very precise state
preparation and measurements and is much more difficult
than observing a violation of a Bell or NC inequality.
Despite these difficulties, several experiments have

tested Hardy’s nonlocality [17,18]. An equivalent experi-
ment for contextuality faces an additional obstacle: it
cannot be implemented by measuring different subsystems
of a composite system, as in Bell-inequality experiments,
or different degrees of freedom of a single system [19,20],
but requires sequential measurements on the same system.
Moreover, (1) the sequential measurements must be com-
patible [21] and (2) every measurement must be carried out
using the same device in any context [22]. In addition,
(i) the probabilities in Eqs. (1a) and (1b) must sum up to 1
within the experimental error, (ii) the probability in Eq. (3)
must be in agreement with the quantum prediction, and
(iii) when considered together, the probabilities must
violate the KCBS inequality.
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Experimental setup.—Our experiment adopts a novel
method for performing two sequential measurements on
the path degrees of freedom of the same photon. See Fig. 1.
In our experiment, the physical systems are defined by
single photons in a three-path setup. The basis vectors j0i,
j1i, and j2i correspond to finding the photon in path a, b,
or c, respectively. Each run of the experiment consists of
preparing a single photon in a given state and measuring
two compatible observables i and iþ 1 (or iþ 1 and i),
sequentially. Single photons are generated from a heralded
single photon source through a spontaneous parametric
down-conversion process. The idler photon is used as the
trigger. The initial state of the signal photon in the path
degrees of freedom is

jηi ¼ 1ffiffiffi
3

p ð1; 1; 1ÞT; ð4Þ

where T means transposition. This state is prepared by
combining two beam splitters (BSs), the first with a
reflectivity-to-transmitivity ratio of 33∶66 and the second

with a 50∶50 ratio. See Fig. 2. To exactly define the spatial
and spectral properties of the signal photon, the source is
coupled into a single mode fiber and passed through a
narrow-band interference filter (F).
To perform two sequential measurements on the same

photon we implement the scheme shown in Fig. 1(b) in
which the outcome of the first measurement (that only
addresses the spatial degrees of freedom) is encoded in the
polarization of the photon before the second measurement
(that also only addresses the spatial degrees of freedom).
For that, the signal photon is initially horizontally polar-
ized; thus encoding the outcome of the first measurement
simply requires rotating the polarization in one of the paths

FIG. 1 (color online). Sequential measurements on the same
photon. (a) The system is prepared in state jηi and then submitted
to two nondemolition measurements, one after the other. The
measurement i is implemented by means of a unitary operation
Ui that maps the eigenstate of i with eigenvalue 1 into the desired
path, followed by an operation that stores the outcome in a
detector, followed by the inverse unitary operation U†

i that rotates
to the basis used in the state preparation. The measurement of j
is implemented similarly. (b) Our photonic implementation.
The initial state and the measurements refer to the photon’s path
degrees of freedom. The outcome of i is encoded in the photon’s
polarization. Then the unitary operation Uj corresponding to j is
applied. Then the outcome of i is decoded using polarizing beam
splitters. The outcomes of i and j are given by the detector that
clicks (since each detector corresponds to a combination of
outcomes). There is no need to implementU†

j , since no additional
measurements will be performed.

FIG. 2 (color online). Experimental setup for measuring
observable 2 (in the first place) and observable 1, given by
Eq. (5), on the initial state (4). After preparing state (4), the paths
corresponding to j0i and j1i are injected into a Sagnac interfer-
ometer to control the phase difference. The phase shifter consists
of two quarter wave plates and one HWP in between them. The
result of the unitary operation U2 is given by the Sagnac outputs
together with the third path. Then the output of observable 2 is
encoded by rotating the polarization in one of the paths with
the help of a HWP at 45°. Then U†

2 is applied to go back to the
basis used in the state preparation, and the unitary operation U1 is
implemented in a similar way. The outcome of observable 2 is
finally decoded using polarizing beam splitters (PBSs), so the
single photon detector that clicks gives the outcomes of observ-
ables 2 and 1. All coincidence counts between the signal and idler
photons are registered using an eight-channel coincidence logic
with a time window of 1.7 ns. The number of detected photons
was approximately 2 × 103 per second and the total time used for
each experimental configuration was 10 s.
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after the unitary transformation corresponding to the first
measurement.
Two measurements μ1 and μ2 are compatible if there is a

measurement μ such that the outcome set of μ is the
Cartesian product of the outcome sets of μ1 and μ2, and, for
all states, the outcome probability distributions for μ1 or μ2
are recovered as marginals of the outcome probability
distribution of μ. In our experiment, we took advantage of
the fact that μ1 and μ2 are sharp quantum measurements on
path degrees of freedom of a photon. In this case, there is an
algorithm for constructing the corresponding measurement
devices for μ1 and μ2 [23]. Then, measuring μ is equivalent
to measuring sequentially μ1 and μ2. Compatibility can
then be tested by checking that the order of μ1 and μ2 does
not affect the probabilities. Perfect compatibility is only
limited by our ability to construct devices corresponding to
the exact unitary transformations needed and by imperfec-
tions when combining them.
The measurements i in our experiment, with i ¼ 1;…; 5,

are those represented by the projectors jviihvij on the
following states:

jv1i ¼
1ffiffiffi
3

p ð1;−1; 1ÞT; ð5aÞ

jv2i ¼
1ffiffiffi
2

p ð1; 1; 0ÞT; ð5bÞ

jv3i ¼ ð0; 0; 1ÞT; ð5cÞ

jv4i ¼ ð1; 0; 0ÞT; ð5dÞ

jv5i ¼
1ffiffiffi
2

p ð0; 1; 1ÞT: ð5eÞ

The possible outcomes are 1 and 0. Each measurement i
consists of a unitary transformation Ui to project the qutrit
onto the two eigenspaces of i, followed by a recording
of the outcome. In our case, the outcome of the first
measurement is encoded in the polarization of the photon
by adding a half wave plate (HWP) in one of the paths.
Then the inverse unitary transformation U†

i is implemented
in order to rotate back to the initial basis. Unitary trans-
formations Ui and U†

i with i ¼ 1;…; 5 were implemented
by mapping jvii, i.e., the quantum state corresponding to
eigenvalue 1, to path a and mapping the subspace corre-
sponding to eigenvalue 0 to the remaining two paths b
and c. The devices for the unitary transformations for the
five measurements i are shown in Fig. 3. Figure 2 shows the
complete experimental setup corresponding to the sequen-
tial measurement of observables 2 (in the first place) and 1.
State (4) and these measurements lead to the conditions

needed for a Hardy-like proof of contextuality, namely,

Pjηið0; 1j1; 2Þ þ Pjηið0; 1j2; 3Þ ¼
2

3
þ 1

3
; ð6aÞ

Pjηið0; 1j3; 4Þ þ Pjηið0; 1j4; 5Þ ¼
1

3
þ 2

3
; ð6bÞ

Pjηið0; 1j5; 1Þ ¼
1

9
: ð6cÞ

Experimental results.—The experimental results are
presented in Table I. The errors come from Poissonian
counting statistics and systematic errors. The main sources
of systematic errors are the slight imperfections in the
optical interferometers due to nonperfect overlapping and
intrinsic imperfections of the BSs and HWPs. The results
are in very good agreement with the predictions of QT
for an ideal experiment and are essentially insensitive to
the order in which the measurements are performed. This
contrasts with previous photonic experiments in which the
independence of the order was not tested [24,25].
Taking the experimental results needed for the Hardy-

like contextuality from Table I, we obtain

FIG. 3 (color online). Experimental setups for the unitary
operations Ui (in red) and U†

i (in blue) for i ¼ 1; 2; 3. They
consist of combinations of BSs with 33∶66 and 50∶50 splitting
ratios. The setups for U4 and U†

4 are the same as those for U3

and U†
3, respectively, but with the following relabeling of paths:

j0iU3 → j1iU4, j1iU3 → j2iU4, and j2iU3 → j0iU4. The setups
for U5 and U†

5 are the same as those for U2 and U†
2, respectively,

but with the following relabeling of paths: j0iU2 → j1iU5,
j1iU2 → j2iU5, and j2iU2 → j0iU5.
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Pjηið0; 1j1; 2Þ þ Pjηið0; 1j2; 3Þ ¼ 0.981� 0.021; ð7aÞ

Pjηið0; 1j3; 4Þ þ Pjηið0; 1j4; 5Þ ¼ 0.987� 0.012; ð7bÞ

Pjηið0; 1j5; 1Þ ¼ 0.110� 0.005: ð7cÞ

These results were obtained by measuring i in the first place
in half of the runs and measuring iþ 1 in the first place in
the other half. These results show a very good agreement
with the predictions of QT for an ideal experiment and thus
provide experimental evidence of the Hardy-like contex-
tuality as shown by the following facts: (i) Pjηið0; 1j1; 2Þþ
Pjηið0; 1j2; 3Þ and Pjηið0; 1j3; 4Þ þ Pjηið0; 1j4; 5Þ are 1
within the experimental error, (ii) Pjηið0; 1j5; 1Þ is nonzero
and in very good agreement with the value predicted by
QT given by Eq. (3), (iii) the joint probabilities are almost
independent of the order in which the measurements were
performed, and (iv) the sum of the joint probabilities
violates the KCBS inequality [16], namely,

S ¼
X5

i¼1

Pð0; 1ji; iþ 1Þ ≤
NCHV

2; ð8Þ

where the sum is taken modulo 5 and “ ≤
NCHV

2” indicates
that 2 is the maximum for NCHV theories. From the results
in Eqs. (7a)–(7c), we obtain

Sexp ¼ 2.078� 0.038; ð9Þ
in agreement with the quantum prediction for an ideal
experiment.
Compatibility was enforced by choosing i or iþ 1 to

be represented by commuting operators. In addition, we
checked compatibility in two ways. First, we checked that
the probabilities do not depend on the order in which
measurements were performed. Second, we counted the
clicks in the detector corresponding to ð1; 1ji; iþ 1Þ. These
detections would never occur in an ideal situation, since the
eigenstates of i and iþ 1 with eigenvalue 1 are orthogonal.
Our experiment was very close to this ideal situation, since
these events only occurred with probabilities in the range
0.002� 0.001–0.006� 0.001 for nine out of the ten
configurations, and with probability 0.021� 0.001 for

the most complex configuration, which is the one shown
in Fig. 2.
The noncontextual upper bound of the KCBS inequality

is derived under the assumption that the two measurements
are perfectly compatible. However, experimental imperfec-
tions make this assumption only approximately satisfied.
To show the significance of the experimental results in this
case, we followed the approach used in previous experi-
ments [25]. It consists of assuming that the noncontextual
upper bound of the inequality is valid for some fraction
ð1 − ϵÞ of the experimental runs, but must be corrected
assuming the most adversarial scenario for the other
fraction ϵ. The parameter ϵ is defined as the average of
Pð1; 1ji; iþ 1Þ for the ten experimental configurations
tested. In an ideal experiment ϵ would be zero. Our
assumption is that the noncontextual upper bound of the
KCBS inequality (namely 2) is valid only for a fraction
1 − ϵ of the runs, while for the remaining fraction ϵ we
assume the worst-case scenario in which the maximum of
the KCBS inequality for general probabilistic theories
(namely 5

2
) is reached. In our experiment, ϵ ¼ 0.0062.

Therefore, the noncontextual upper bound of the KCBS
inequality shifts from 2 to 2ð1 − ϵÞ þ 5

2
ϵ ¼ 2.0031.

Nevertheless, the experimental value in Eq. (9) still violates
this bound. Notice that this is also true if we define ϵ as the
largest value of Pð1; 1ji; iþ 1Þ for the ten experimental
configurations, since in this case the bound is shifted from
2 to 2.0105.
Conclusion and further applications.—By implementing

a new method for performing two sequential measurements
on the same photon, we have presented the first exper-
imental observation of Hardy-like contextuality, which is
arguably the conceptually cleanest form of contextuality in
physics and connects the quantum violation of the simplest
NC inequality [16] with the Kochen-Specker theorem [2],
thus providing the link between two fundamental results
in QT [10].
In this experiment, we have observed for the first timewith

photons that the correlations between the outcomes of
sequential measurements represented by commuting oper-
ators are independent of the order in which the measurements
are performed. In addition, the experiment is precise enough
to confirm the small quantum violation of the relevant NC
inequality. This shows that this method can be used for a
variety of pending fundamental experiments demanding high
precision sequential measurements, e.g., contextuality-based
nonlocality [26,27], almost-state-independent contextuality
[28,29], and contextuality-nonlocality monogamy [30].
Finally, this method for sequential measurements on

photonic systems opens the door to applications in quantum
information processing that require both sequential mea-
surements and transmission of quantum information
between spatially separated parties, e.g., contextuality-
based cryptography [31] and dimension witnessing [32].

TABLE I. Experimental results. The second and third column
shows the probabilities when the measurements are performed in
direct and reverse order, respectively. The fourth column shows
the prediction of QT for an ideal experiment.

ði; iþ 1Þ Pjηið0; 1ji; iþ 1Þ Pjηið1; 0jiþ 1; iÞ Ideal

(1,2) 0.635� 0.020 0.661� 0.011 0.667
(2,3) 0.332� 0.008 0.331� 0.005 0.333
(3,4) 0.330� 0.004 0.339� 0.003 0.333
(4,5) 0.650� 0.008 0.656� 0.011 0.667
(5,1) 0.111� 0.003 0.109� 0.004 0.111
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