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We show that non-Hermitian dynamics generate substantial entanglement in many-body systems.
We consider the non-Hermitian Lipkin-Meshkov-Glick model and show that its phase transition occurs
with maximum multiparticle entanglement: There is full N-particle entanglement at the transition, in
contrast to the Hermitian case. The non-Hermitian model also exhibits more spin squeezing than the
Hermitian model, showing that non-Hermitian dynamics are useful for quantum metrology. Experimental
implementations with trapped ions and cavity QED are discussed.
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Entanglement is a powerful way to understand the nature
of many-body systems [1–3]. Its utility has spread beyond
quantum information into other areas of physics like
condensed matter. In particular, it has been shown that
entanglement provides new insight into condensed-matter
systems and their phase transitions [4]. Aside from funda-
mental interest, understanding the entanglement in con-
densed-matter systems allows one to use such systems for
applications like quantum computing and quantum metrol-
ogy [5–8]. In these applications, one would like as much
entanglement as possible.
In a many-body system, a quantum phase transition

changes how the particles are entangled with each other [4].
The Lipkin-Meshkov-Glick model is the simplest model of
interacting spins with a quantum phase transition, so it is an
important example: The phase transition occurs with two-
particle entanglement [9,10], while multiparticle entangle-
ment becomes macroscopic after the transition [11,12].
At the same time, the field of non-Hermitian quantum

mechanicshasdrawnsignificant interest,especiallywithrecent
experimental results in cavities [13,14], waveguides [15], and
ultracold atoms [16]. The motivation is that non-Hermitian
systems behave quite differently from Hermitian ones and
can exhibit novel phenomena [17–32]. Non-Hermitian
dynamics commonly arise in systems with decay or loss.
In this Letter, we view non-Hermitian quantum mechan-

ics from a quantum-information perspective: We see what
kind of entanglement it generates. We study the non-
Hermitian Lipkin-Meshkov-Glick model and show that
the phase transition occurs with maximum multiparticle
entanglement [Fig. 1(a)]. In fact, all particles are entangled
at the transition, in contrast to the Hermitian transition. The
presence of substantial multiparticle entanglement can be
seen in the Wigner function, which exhibits fringes of
negative value [Fig. 1(b)]. Thus, non-Hermiticity amplifies
the entanglement at the phase transition.

We further show that the entanglement is useful for
quantum metrology: The non-Hermitian model generates
spin squeezing with phase sensitivity near the Heisenberg
limit and exhibits more squeezing than the Hermitian
model [33,34]. Thus, non-Hermitian dynamics may be a
resource for quantum metrological applications like mag-
netometry [35] and atomic clocks [36].
We also discuss experimental implementation with

trapped ions and cavity QED. Although the scheme is
probabilistic, one can implement the non-Hermitian model
for thousands of atoms with a high probability, because
the gap increases linearly with system size.
Model.—The (Hermitian) Lipkin-Meshkov-Glick model

is the simplest quantum model of interacting spins [37].
Here, we consider the non-Hermitian version

H ¼ V
N
ðJ2x − J2yÞ −

iγ
2
Jz −

iγN
4

; ð1Þ

where ~J ¼ 1
2

P
n~σ

n are collective spin operators, V is the
coupling strength, and N is the number of spins. For
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FIG. 1 (color online). Entanglement properties for N ¼ 20
spins. (a) Averaged quantum Fisher information F̄=N2 (solid
line) indicates multiparticle entanglement, while rescaled con-
currence CR (dashed line) indicates two-particle entanglement.
(b) Wigner function on the Bloch sphere for V ¼ Vc.
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simplicity, we assume N is a multiple of 4. We focus on the
Dicke manifold with maximum angular momentum, so the
Hilbert space has dimension N þ 1.
The Hermitian terms of Eq. (1) can be experimentally

implemented by using trapped ions [38,39] or cavity QED
[40]. To obtain the non-Hermitian terms, we assume that
j↑i has a finite lifetime given by linewidth γ. Then,
conditioned on the absence of a decay event, the atoms
evolve with Eq. (1) [41–45]. In practice, one would do
many experimental runs, and the runs without decay events
simulate Eq. (1). The non-Hermitian evolution decreases
the wave-function norm over time due to the decrease in
probability of a successful run. By having j↑i decay into an
auxiliary state instead of j↓i and measuring the population
in the auxiliary state, one can accurately determine whether
a decay event occurred [46,47].
Consider the eigenvalues and eigenstates of the

Hamiltonian [Eq. (1)]. A wave function can be written
as a superposition of the eigenstates of H. Because of the
non-Hermitian terms, all eigenvalues have negative imagi-
nary parts [Fig. 2(a)]. Suppose one evolves a wave function
using expð−iHtÞ: the weight in each eigenstate decreases
over time due to the imaginary parts of the eigenvalues.
After a sufficient amount of time, the wave function
consists mostly of the eigenstate whose eigenvalue has
the largest imaginary part. We are interested in this
surviving eigenstate, because it is the one that would be
observed experimentally. We call this eigenstate the steady
state, since the system eventually settles into it [30,32,48].
Sharp transition.—We are interested in whether the

steady state exhibits a phase transition. We define the
spectral gapΔ as the difference of the two largest imaginary
parts of eigenvalues. The gap indicates how quickly the
system reaches the steady state. If the gap closes (Δ → 0),
eigenvalues become degenerate, and the corresponding
eigenstates change nonanalytically. We define Vc as the
value of V at which the gap closes. For later usage, we
define V� as the value of V at which the gap is maximum.
As seen in Fig. 2, the gap closes already for finite

N, leading to nonanalytic behavior of hσzi at Vc. Non-
Hermitian models are unique in their ability to have
singularities for finite N, known as “exceptional points”

[17–19]. However, Fig. 3(a) shows that Vc increases
linearly with N, implying that a singularity does not occur
in an infinite system. Thus, the non-Hermitian steady state
has sharp transitions for finite N but not for infinite N;
in contrast, Hermitian models have sharp transitions for
infinite N but not for finite N.
Figure 2(a) shows that there is actually a sequence of

degeneracies as V increases, and the degeneracy of the
steady state is the last one to occur. The degeneracies can
be understood by noting that the mapping Jx; Jy; Jz →
Jy; Jx;−Jz leads to

H þ iγN
4

→ −
�
H þ iγN

4

�
: ð2Þ

This implies that the eigenvalues of H are symmetric
around −iγN=4 and degenerate in pairs.
Given the collective nature of the model, it is natural

to use a mean-field approach [23,49]. Mean-field theory
predicts that a degeneracy occurs at V ¼ γ=2; this is
actually where the first degeneracy occurs (see
Supplemental Material [50]) and is unrelated to the steady
state. Thus, the transition of the steady state (for finite N) is
not predicted by mean-field theory.
Entanglement.—Having established that there is a sharp

transition, we now characterize its entanglement [51,52].
To quantify two-particle entanglement, we use rescaled
concurrence CR ¼ ðN − 1ÞC, where C is the concurrence;
if CR > 0, there is two-particle entanglement [53]. To
quantify multiparticle entanglement, we use the averaged
quantum Fisher information (QFI) [6,7],

F̄ ¼ 4

3
½ðΔJxÞ2 þ ðΔJyÞ2 þ ðΔJzÞ2�: ð3Þ

The magnitude of F̄ gives an indication of how much
multiparticle entanglement there is; if F̄=N2 is on the order
of 1, there is macroscopic multiparticle entanglement. In
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FIG. 2 (color online). Eigenvalues of H for N ¼ 20, showing
(a) imaginary parts and (b) the gap between the two largest
imaginary parts. (c) hσzi of the steady state.
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FIG. 3 (color online). Scaling of various quantities with N.
(a) Vc (blue circles) and V� (red asterisks). (b) The gap at V�.
(c) Averaged quantum Fisher information F̄=N2 at Vc (blue
circles) and V� (red asterisks). (d) hσzi at V�.
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the Hermitian Lipkin-Meshkov-Glick model, rescaled con-
currence peaks at the phase transition [9,10], while QFI
becomes macroscopic after the transition [11,12].
Figure 1(a) shows the entanglement for the non-

Hermitian model for N ¼ 20. (Other N behave similarly.)
Rescaled concurrence peaks before the transition, while
QFI reaches a plateau at the transition. In fact, QFI takes
the maximum possible value, F̄ ¼ ðN2 þ 2NÞ=3, when
V ≥ Vc, meaning that the steady state is fully N-particle
entangled [6,7]. Thus, the non-Hermitian transition is
associated with multiparticle entanglement, in contrast to
the two-particle entanglement of the Hermitian transition.
To understand this behavior, we recall that if a pure

symmetric state has h~Ji ¼ 0, it is N-particle entangled [7].

At the phase transition, the steady state has h~Ji ¼ 0 because
of three reasons. (i) H is even in Jx; Jy, so hJxi ¼ hJyi ¼ 0

always. (ii) H þ iγN=4 is PT symmetric [54,55], so its
eigenvalues have 0 imaginary part at the transition
(when PT symmetry is on the verge of breaking).
(iii) ImðH þ iγN=4Þ is odd in Jz, so hJzi ¼ 0 at the
transition. Any other Hamiltonian with these three proper-
ties will also be N-particle entangled at its phase transition.
The presence of substantial multiparticle entanglement

is reflected in the Wigner function [56], which exhibits
interference fringes with negative values [Fig. 1(b)]. Thus,
the steady state is a highly nonclassical state [57] and is
similar to a rotated jm ¼ 0i Dicke state (see Supplemental
Material [50]). We note that Ref. [32] shows that the steady
state of H ¼ −iJ2x is also a Dicke state with N-particle
entanglement.
Figure 1(a) shows that, even when V < Vc, QFI remains

large, meaning that there is still a lot of multiparticle
entanglement. For example, when V ¼ V�, there is still
13-particle entanglement [6,7].
Spin squeezing.—Now we show that the entanglement is

useful for quantum metrology by calculating the spin
squeezing of the steady state. When an ensemble of atoms
is spin squeezed, one can measure rotations on the Bloch
sphere better than the shot-noise limit, which is important
for precision measurements. We use the spin-squeezing
parameter as defined by Wineland et al. [33],

ξ2 ¼ min
~n⊥

NðΔJ~n⊥Þ2
jh~Jij2

; ð4Þ

where ~n⊥ is a unit vector normal to h~Ji. There is squeezing
when ξ2 < 1; the smaller ξ2 is, the better the phase
sensitivity.
Figure 4(a) shows that ξ2 reaches a minimum at V�,

which is where the gap is maximum [Fig. 2(b)]. Figure 4(b)
shows the squeezing for different N and indicates
ξ2 ≈ 3=N, so the phase sensitivity is near the Heisenberg
limit (ξ2 ¼ 1=N).

For comparison, squeezing of the Hermitian ground
state scales as ξ2 ∼ N−1=3 [10]. Time evolution with the
Hermitian Hamiltonian (two-axis countertwisting model
[34]) leads to squeezing with ξ2 ≈ 4=N. Thus, the non-
Hermitian model has more squeezing than the Hermitian
model. It also surpasses the master equation’s steady state
(ξ2 ¼ 1=2) [58].
We note that there are other measurement-based spin-

squeezing protocols, starting from Kuzmich et al. [59–61].
Our scheme uses a different type of measurement (absence
of a decay event), which leads to the explicit non-Hermitian
Hamiltonian in Eq. (1). This non-Hermitian scheme may
be advantageous in situations where the decay of j↑i is
non-negligible. Also, since the scheme is based on a steady
state, it is robust to initial conditions.
Probabilities.—The non-Hermitian scheme is probabi-

listic, since it is conditioned on the absence of a decay event
among N atoms. An important question is how scalable
the scheme is: For large N, what is the probability that an
experimental trial reaches the steady state before a decay
event? One expects that, as N increases, the probability
should decrease exponentially. This turns out to be wrong
due to two fortunate coincidences.
The time to reach the steady state is on the order of 1=Δ.

The average number of decay events during this time is [41]

μ ¼ γNðhσzi þ 1Þ
2Δ

: ð5Þ

The probability of no decay event is e−μ.
It is advantageous to set V ¼ V�, since Δ is maximum

and ξ2 is minimum there. Now, it turns out that ΔðV�Þ
increases linearly with N [Fig. 3(b)]. To estimate hσzi, we
use its steady-state value, which is independent of N when
V ¼ V� [Fig. 3(d)]. Thus, this rough estimate says that the
probability of success is independent of N.
For a more accurate estimate, Fig. 5 shows the non-

Hermitian evolution of N ¼ 1000 spins starting with all
spins in j↓i. As time increases, ξ2 decreases towards the
steady-state value, and the probability of no decay event
decreases. The squeezing reaches the steady state at a time
of about 0.025=γ, which corresponds to a probability of 0.4.
This clearly shows that the non-Hermitian scheme is
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FIG. 4 (color online). (a) Spin squeezing for N ¼ 20 as a
function of V. (b) Minimum ξ2 for different N.
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feasible for a large number of spins. This is due to two
fortunate coincidences: ξ2 is minimum when Δ is maxi-
mum, and Δ increases linearly with N.
Bosonic approximation.—The above results were

obtained numerically by using exact diagonalization. One
can obtain many results analytically by using the Holstein-
Primakoff transformation. We expand around Jz¼−N=2 by
mapping Jz→−N=2þa†a and J−→

ffiffiffiffi
N

p
a, where a† and a

are bosonic creation and annihilation operators that satisfy
½a; a†� ¼ 1. This mapping is accurate when a†a ≪ N.
Equation (1) becomes

H ¼ V
2
ða†2 þ a2Þ − iγ

2
a†a; ð6Þ

which can be diagonalized by using a complex Bogoliubov
transformation [28–30]:

H ¼ −
i
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4V2 þ γ2

q
b̄b −

i
4

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4V2 þ γ2

q
− γ

�
; ð7Þ

a† ¼ b̄ cosh
θ

2
þ b sinh

θ

2
; a ¼ b̄ sinh

θ

2
þ b cosh

θ

2
;

where θ satisfies −2iV=γ ¼ tanh θ and b̄ and b are bosonic
creation and annihilation operators that satisfy ½b; b̄� ¼ 1.
It is important to realize that b̄ ≠ b† because θ is complex.
The vacuum state of the b bosons is defined via bj0i ¼ 0.
We identify j0i as the steady state because its eigenvalue has
the largest imaginary part.
The eigenvalues are given by Eq. (7), and the bosonic

model never has a degeneracy. We recall that the original
model has eigenvalues symmetric around−iγN=4 [Eq. (2)].
Equation (7) predicts only the eigenvalues above −iγN=4.
To get the other eigenvalues, we have to expand around
Jz ¼ N=2. The symmetry implies that a degeneracy occurs
when an eigenvalue reaches −iγN=4.
This allows us to predict, for large N (see Supplemental

Material [50]),

V� ¼ ΔðV�Þ ¼ γN
6

; hσziðV�Þ ¼ −
2

3
; ð8Þ

Vc ¼
γN
2
; ξ2ðV�Þ ¼ 27

8N
;

F̄ðV�Þ
N2

¼ 8

27
: ð9Þ

Equations (8) are surprisingly accurate, while Eqs. (9) have
the right scaling with N but not the right prefactor.
Experimental considerations.—The Hermitian part of

Eq. (1) can be implemented by using trapped ions [38] or
atoms in a cavity [40]. A recent experiment implemented a
similar model with 11 ions and V ∼ 1 kHz [39]. To get the
non-Hermitian terms, one would optically pump from j↑i
into an auxiliary state so that j↑i has linewidth γ (see
Supplemental Material [50]). By measuring the population
in the auxiliary state, one can determine with near perfect
efficiency whether a decay event occurred [46,47]. One
would do multiple experimental runs, and the runs without
decay events are the ones that simulate the non-Hermitian
model. The non-Hermitian evolution was experimentally
demonstrated with one ion [46]. Thus, the experimental
implementation of Eq. (1) is well within current
technology.
To see the sharp transition, one would look for the

singularity of hσzi as a function of V [Fig. 2(c)]. When
V < Vc, there is a unique steady state, and each exper-
imental run should last for a time of at least 1=Δ to reach
the steady state. When V > Vc, there is not a unique steady
state, but all eigenstates have hσzi ¼ 0, which can be
observed by averaging over time. Note that the relevant
parameter is V=γ, which can be made large by setting
γ small.
Conclusion.—We have shown that quantum information

sheds new light on non-Hermitian many-body systems.
Non-Hermitian dynamics can amplify the entanglement
and spin squeezing near quantum phase transitions. One
should consider other non-Hermitian models to see how
general this is. In particular, it would be interesting to see
the effect of non-Hermiticity on topological entanglement
entropy [62,63]. Finally, one should study how non-
Hermitian terms affect the entanglement scaling in one-
dimensional spin chains [64–68].
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