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Rectangular real N × ðN þ νÞ matrices W with a Gaussian distribution appear very frequently in data
analysis, condensed matter physics, and quantum field theory. A central question concerns the correlations
encoded in the spectral statistics of WWT . The extreme eigenvalues of WWT are of particular interest. We
explicitly compute the distribution and the gap probability of the smallest nonzero eigenvalue in this
ensemble, both for arbitrary fixed N and ν, and in the universal large N limit with ν fixed. We uncover an
integrable Pfaffian structure valid for all even values of ν ≥ 0. This extends previous results for odd ν at
infinite N and recursive results for finite N and for all ν. Our mathematical results include the computation
of expectation values of half-integer powers of characteristic polynomials.
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Introduction.—To study generic statistical features of
spectra, various kinds of random matrices are used.
FollowingWigner and Dyson [1], Hamiltonians of dynami-
cal systems are modeled by real–symmetric, Hermitian or
self-dual matrices in quantum chaos, and many-body and
mesoscopic physics. Because of universality, cf. Refs. [2,3]
and references therein, Gaussian probability densities suf-
fice, leading to the Gaussian orthogonal ensemble (GOE),
the Gaussian unitary ensemble (GUE), and the Gaussian
symplectic ensemble (GSE) [4]. This concept was extended
to Dirac spectra [5] by imposing chiral symmetry as an
additional constraint, resulting in the chiral (ch) ensembles
chGOE, chGUE, and chGSE [6]. Wishart [7] put forward
random matrices to model spectra of correlation matrices in
a quite different context. There aremany applications in time
series analysis [8–10] (including chaotic dynamics [11]), in
awide range of fields in physics [2,3], biology [12], wireless
communication [13], and finance [14]. In the most relevant
case, N × ðN þ νÞ real matrices W model time series such
that WWT is the random correlation matrix. If it fluctuates
around a given average correlationmatrixC, the distribution
reads

PN;νðWjCÞ ∼ exp ½−TrWWTC−1=2�: ð1Þ
For C ¼ 1N, this happens to coincide with the chGOE,
where W and WT model the nonzero blocks of the Dirac
operator. Closing the circle, one can also extend Wishart’s
model by using non-Gaussian weights. Here and in the
sequel, we focus on Eq. (1) with C ¼ 1N . Since WWT has
positive eigenvalues, the spectrum is bounded from below.
Naturally, the distribution of the smallest (nonzero) eigen-
value is of particular importance.
Much interest in the chGOE was sparked by the obser-

vation [15] that in the limit N → ∞ its spectral correlators
describe the Dirac spectrum in quantum field theories with
real fermions and broken chiral symmetry, see Ref. [16] for a

review. Based on earlier works for finite N [17,18], the
spectral density [15] and all higher density correlation
functions [19] were computed in terms of a Pfaffian
determinant of a matrix kernel for all ν. These quantities
were shown later to be universal [20] for non-Gaussian
potentials, andmost recently for fixed trace ensembles in the
context of quantum entanglement, see Ref. [21] and refer-
ences therein. Further applications of the chGOE can be
found in the recent review [22] on Majorana fermions and
topological superconductors.
In an influential paper [23] the condition number of a

Wishart random matrix WWT was investigated, which is
the root of the ratio of the largest over the smallest nonzero
eigenvalue of WWT . This quantity is important for a
generic matrix as it quantifies the difficulty of computing
its inverse. In Ref. [24] the distribution of the smallest
eigenvalue was calculated recursively in N for arbitrary
rectangular chGOEmatrices. Closed expressionswere given
for quadratic matrices ν ¼ 0 [23] (cf. Ref. [25]) and for
ν ¼ 1; 2; 3 [24]. Later Pfaffian expressions were found in
Ref. [26] for arbitrary odd ν valid for fixed and asymptoti-
cally large N. A more general consideration, including
correlations with C ≠ 1N , of the smallest eigenvalue for ν
odd was given in Ref. [27]. The limiting distributions of the
kth smallest eigenvalue were computed in Ref. [28], again
for ν odd. These quantities are an efficient tool to test
algorithms with exact chiral symmetry in lattice gauge
theories [29], distinguishing clearly between different
topologies labeled by ν. In Ref. [30] the distributions for
higher even ν > 0 were obtained from numerical chGOE
simulations. Most recently efficient numerical algorithms
have been applied, see, e.g., Ref. [31], in order to compute
smallest eigenvalue distributions for arbitrary ν using known
analytic Fredholm determinant expressions [32].
It is our goal to complete the picture for the smallest

chGOE eigenvalue distribution and its integral by finding
explicit Pfaffian expressions for finite and infinite N valid
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for all even ν. Together with previous results this completes
the integrability of this classical ensemble. A presentation
with further results and more mathematical details will be
given elsewhere [33].
Smallest eigenvalue and gap probability.—First, we

define the quantities of interest and state the problem. In
the analytic calculations belowwe setC ¼ 1N in Eq. (1), and
later we compare our universal large N results to numerical
simulations with C ≠ 1N . Because we are only interested
in correlations of the positive eigenvalues ofWWT ¼ OXOT

contained inX ¼ diagðx1;…; xNÞ,wedrop all normalization
constants depending on the orthogonal matrixO. Integrating
the distribution (1) over all independent matrix elements
with respect to flat Lebesgue measurewe obtain the partition
function expressed in terms of the eigenvalues as

ZN;γ ¼
YN
i¼1

Z
∞

0

dxiwγðxiÞjΔNðXÞj; ð2Þ

up to a known constant. Here, we introduce the weight
function wγðxÞ and Vandermonde determinantΔNðXÞ stem-
ming from the Jacobian of the diagonalization

wγðxÞ≡ xγ exp½−x=2�; γ ≡ ðν − 1Þ=2; ð3Þ

ΔNðXÞ≡
Y

1≤i<j≤N
ðxj − xiÞ ¼ det1≤i;j≤N ½xj−1i �: ð4Þ

We note that γ alternates between integer and half-integer
values. The expectation value of an observable f only
depending on X is defined as

hfðXÞiN;γ ≡
Q

N
i¼1

R
∞
0 dxiwγðxiÞfðXÞjΔNðXÞj

ZN;γ
: ð5Þ

Thus, the gap probability that no eigenvalue occupies the
interval ½0; t� is given by

EN;γðtÞ≡ 1

ZN;γ

YN
i¼1

Z
∞

t
dxiwγðxiÞjΔNðXÞj

¼ e−Nt=2ZN;0

ZN;γ
hdetγ½X þ t1N �iN;0: ð6Þ

It is expressed as an expectation value of a characteristic
polynomial to the power γwith respect to theweight function
(3) without the preexponential factor w0ðxÞ. This crucial
identity follows from the translation invariance of the
Vandermonde determinant (4).
The normalized distribution of the smallest nonzero

eigenvalue PN;γðtÞ is obtained by differentiating Eq. (6)

PN;γðtÞ≡ −
∂EN;γðtÞ

∂t
¼ tγe−Nt=2NZN−1;1

ZN;γ
hdetγ½X þ t1N−1�iN−1;1; ð7Þ

where the second line follows along the same steps as in
Eq. (6). This relation is well known [26,28], with the
difficulty to compute the average (also called massive
partition function) for γ half integer, which is our main task.
To compute Eqs. (6) and (7) we need to know the

normalizing partition functions, which are given for arbi-
trary real ν > −1 in terms of the Selberg integral, see also
Refs. [34,35], and the expectation values. For integer γ ¼ k
corresponding to odd ν ¼ 2kþ 1 closed expressions of
Eq. (7) exist [26], given in terms of Laguerre polynomials
skew orthogonal with respect to the weight (3). Therefore,
we concentrate on the case ν ¼ 2k even.
Pfaffian structure and finite N results.—To show that the

gap probability (6) has a Pfaffian structure when γ is half
integer let us define the following parameter dependent
weight function

wðx; tÞ≡ exp½−ηx=2�= ffiffiffiffiffiffiffiffiffiffi
xþ t

p
: ð8Þ

It absorbs the half-integer part in the expectation value (6)
when ν ¼ 2k is even. We set η ¼ 1 unless otherwise stated.
The monic polynomials Rkðx; tÞ ¼ xk þ � � � are defined to
be skew orthogonal with respect to the following skew-
symmetric scalar product

hf;git≡
Z

∞

0

dy
Z

y

0

dxwðx; tÞwðy; tÞ½fðxÞgðyÞ−fðyÞgðxÞ�

ð9Þ

by satisfying for all i; j ¼ 0; 1;… [36] the conditions

hR2j; R2iit ¼ 0 ¼ hR2jþ1; R2iþ1it
hR2jþ1; R2iit ¼ rjðtÞδij: ð10Þ

Their normalizations rjðtÞ depend on t. The partition
function ZNðtÞ of this new weight (8) is defined by

ZNðtÞ≡
YN
i¼1

Z
∞

0

dxiwðxi; tÞjΔNðXÞj ¼ N!
YN2−1
i¼0

riðtÞ: ð11Þ

The last step holds for N even [4]. Likewise, we define
expectation values hfðXÞitN , following Eq. (5). Thus, for
even ν ¼ 2k, k ∈ N, Eq. (6) reduces to

EN;k−1
2
ðtÞ ¼ e−Nt=2 ZNðtÞ

ZN;k−1
2

hdetk½X þ t1N �itN; ð12Þ

given in terms of an integer power of a characteristic
polynomial. While the skew-orthogonal polynomials with
respect to the weight (3) are know in terms of Laguerre
polynomials [26], the difficulty here is to determine the
t-dependent polynomials and normalization constants for
the nonstandard weight (8). They can be computed follow-
ing the observation [37]
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R2jðy; tÞ ¼ hdet½X − y12j�it2j; ð13Þ

R2jþ1ðy; tÞ ¼ hðyþ cþ TrXÞ det½X − y12j�it2j
¼ ðyþ cÞR2jðy; tÞ − 2

∂
∂ηR2jðy; tÞ

����
η¼1

: ð14Þ

The odd polynomials are obtained by differentiation
of the weight (8), generating TrX in the average. Note that
the R2jþ1ðy; tÞ are not unique [37]; we set c ¼ 0 in the
following. The even polynomials (13) can be calculated by
mapping them back to a proper matrix integral over an
auxiliary 2j × ð2jþ 1Þ matrix W̄ (corresponding to γ ¼ 0)

R2jðy; tÞ ¼ C2jðtÞ
Z

dW
det½WWT − y12j�
det

1
2½WWT þ t12j�

e−ðη=2ÞTrWWT
;

ð15Þ

cf. Ref. [27]. The known normalization constant C2jðtÞ
follows from the fact that the polynomial is monic. Without
giving details Eq. (15) can be computed exactly, represent-
ing the determinants by Gaussian integrals over commuting
and anticommuting variables and by using standard boso-
nization techniques [38]. We arrive at

Ra
2jðy; tÞ ¼

ð2jÞ!ðUjðtÞLðaþ1Þ
2j−a ðyÞ − 2U0

jðtÞLðaÞ
2j−aðyÞÞ

ð2j − aÞ!Uð2jþ1
2

; 3
2
; t
2
Þ

ð16Þ

for the ath derivatives of the polynomials
ð∂a=∂yaÞRjðy;tÞ≡Ra

j ðy;tÞ, a¼0;1;…, needed later. Here,
UjðtÞ≡Uððð2jþ 1Þ=2Þ; 1

2
; ðt=2ÞÞ denotes the Tricomi

confluent hypergeometric function, satisfying U0ða; b; tÞ ¼
−aUðaþ 1; bþ 1; tÞ [39]. The derivative in Eq. (16) acts
only on the generalized Laguerre polynomials used in

monic normalization LðaÞ
j ðyÞ ¼ yj þ � � �. They satisfy

ð∂a=∂yaÞLðbÞ
n ðyÞ ¼ ðn!=ðn − aÞ!ÞLðbþaÞ

n−a ðyÞ, where we set

LðbÞ
n ðyÞ≡ 0 for n < 0. For the odd polynomials we obtain

Ra
2jþ1ðy; tÞ
¼ ð4j2 þ 4jþ yÞRa

2jðy; tÞ þ aRa−1
2j ðy; tÞ

þ ð2jÞ!=ð2j − aÞ!
Uð2Nþ1

2
; 3
2
; t
2
Þ

�
4tU00

j ðtÞLðaÞ
2j−aðyÞ þ 4U0

jðtÞ

×

�
aLðaÞ

2j−aðyÞ þ ð2j − aÞyLðaþ1Þ
2j−a−1ðyÞ þ

t
2
Lðaþ1Þ
2j−a ðyÞ

�

− 2UjðtÞ½aLðaþ1Þ
2j−a ðyÞ þ ð2j − aÞyLðaþ2Þ

2j−a−1ðyÞ�
�
; ð17Þ

and the normalization constants in Eq. (10) read

rjðtÞ ¼ 2ð2jÞ!ð2jþ 1Þ!Uð2jþ3
2

; 3
2
; t
2
Þ

Uð2jþ1
2

; 3
2
; t
2
Þ : ð18Þ

Following Ref. [26] with their Laguerre weight w0ðxÞ in
Eq. (3) replaced by our weight (8), we express the gap
probability (12) as a Pfaffian determinant with our kernel
consisting of the skew-orthogonal polynomials (16) and
(17). In a more general setting averages of characteristic
polynomials such as Eq. (12) were considered in
Refs. [40,41] for arbitrary but unspecified weights. For
finite even N and ν ¼ 2k with k ¼ 2m even we obtain

EN;k−1
2
ðtÞ¼CN;ν

ffiffi
t

p
e−Nt=2U

�
Nþ2mþ1

2
;
3

2
;
t
2

	

×Pf

2
4 XN2þm−1

j¼0

Ra
2jþ1ð−t;tÞRb

2jð−t;tÞ−ða↔bÞ
rjðtÞ

3
5
k−1

a;b¼0

:

ð19Þ
For k ¼ 2m − 1 odd the last row (and column) inside the

Pfaffian is replaced by ð−ÞRbðaÞ
Nþk−2ð−t; tÞ=rN=2þm−1ðtÞ,

respectively, (for N odd, cf. Ref. [33]). The known t-
independent constant CN;ν is suppressed for simplicity; it
ensures EN;k−ð1=2Þðt ¼ 0Þ ¼ 1.
Equation (19) is our first main result. A similar answer

can be obtained for PN;γðtÞ for even ν, given in terms of
skew-orthogonal polynomials with respect to the weight
xwðx; tÞ. This provides an explicit integrable Pfaffian
structure for both EN;γðtÞ and PN;γðtÞ. It extends the odd
ν result for PN;γðtÞ in Ref. [26], which is given by a Pfaffian
determinant as well, but with a different kernel.
For illustration we give two examples. For ν ¼ 0 the

Pfaffian in Eq. (19) is absent, and

EN;−1
2
ðtÞ ¼ ðN − 1Þ! ffiffi

t
p

e−Nt=2

2N−1=2ΓðN=2Þ U

�
N þ 1

2
;
3

2
;
t
2

	
; ð20Þ

whereas for ν ¼ 2 the kernel is absent, and only the
polynomial (16) with a ¼ 0 contributes:

EN;þ1
2
ðtÞ ¼ ΓðNþ1

2
Þ ffiffi

t
p

e−Nt=2

ð−1ÞN ffiffiffiffiffiffi
2π

p
N!

× ½UNðtÞLð1Þ
N ð−tÞ − 2U0

NðtÞLð0Þ
N ð−tÞ�: ð21Þ

Equations (20) and (21) are compared to numerical
simulations in Fig. 1. They can be matched with the finite
N results of Ref. [24] for ν ¼ 0; 2, after differentiating them
and using identities for the Tricomi function [39].
Microscopic large N limit.—We turn to the large N limit

keeping ν fixed, referred to as the hard edge limit. It is
particularly important as the limiting density correlation
functions are universal for non-Gaussian weight functions
for any integer ν [20]. Because the gap probability can be
expressed in terms of the limiting universal kernel [32] [see
Eq. (30) for the corresponding density], its universality
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carries over to the distribution of the smallest eigenvalue.
Moreover, in Ref. [27] it was shown for both ν even and
odd, without explicitly calculating the distributions, that the
presence of a nontrivial correlation matrix in Eq. (1) does
not change the limiting smallest eigenvalue distribution
when the spectrum of C has a finite distance to the origin.
The limiting gap probability and smallest eigenvalue

distribution are defined as

EγðuÞ≡ lim
N→∞

EN;γ



t¼ u

4N

�
;

∂
∂uEγðuÞ¼−PγðuÞ: ð22Þ

In view of Eq. (19) we need the following asymptotic limit
of the hypergeometric function

U


aN þ c; b;

u
8N

�
≈
2ðN28a=uÞðb−1Þ=2

ΓðaN þ cÞ Kb−1

� ffiffiffiffiffiffiffiffiffi
au
4
3

r 	
:

ð23Þ
For a half-integer index the modified Bessel function of
second kind simplifies, e.g., for b ¼ 1=2; 3=2; 5=2

K�1
2
ðzÞ ¼

ffiffiffiffiffi
π

2z

r
e−z; K3

2
ðzÞ ¼ ð1 − z−1ÞK1

2
ðzÞ: ð24Þ

Inside the Pfaffian (19) the sum is replaced by an integral,P
j → ðN=2Þ R 1

0 dx, with j ¼ Nx=2. The limiting skew-
orthogonal polynomials follow from Eq. (23) together with
the standard Laguerre asymptotic in terms of modified
Bessel functions of the first kind, see, e.g., Ref. [39]. This
leads to the following limiting kernel inside the Pfaffian
(19), independently of N being even or odd,

κabðuÞ≡
Z

u

0

dz
u
½2ðb − aÞIað

ffiffiffi
z

p ÞIbð
ffiffiffi
z

p Þ

þ ð2bþ 1ÞIaþ1ð
ffiffiffi
z

p ÞIbð
ffiffiffi
z

p Þ
− ð2aþ 1ÞIbþ1ð

ffiffiffi
z

p ÞIað
ffiffiffi
z

p Þ�: ð25Þ
The final answer for the limiting gap probability reads

Ek−1=2ðuÞ ¼ Cee−
ffiffi
u

p
=2−u=8Pf½κabðuÞ�k−1a;b¼0 ð26Þ

for ν ¼ 2k with k ¼ 2m even and

Ek−1=2ðuÞ¼Coe−
ffiffi
u

p
=2−u=8

×Pf

�
κabðuÞ−ua=2½Iaþ1ð

ffiffiffi
u

p Þþ Iað
ffiffiffi
u

p Þ�
ub=2½Ibþ1ð

ffiffiffi
u

p Þþ Ibð
ffiffiffi
u

p Þ�0

�k−2
a;b¼0

ð27Þ
for k ¼ 2m − 1 odd. We suppress the known u-independent
normalization constants Ce=o. The corresponding limiting
result for the smallest eigenvalue distribution is

Pk−1=2ðuÞ ¼ Ĉeukð1þ 2=
ffiffiffi
u

p Þe− ffiffi
u

p
=2−u=8Pf½κ̂abðuÞ�k−1a;b¼0

ð28Þ

for ν ¼ 2k with k ¼ 2m even, and

Pk−1=2ðuÞ
¼ Ĉoukð1þ 2=

ffiffiffi
u

p Þe− ffiffi
u

p
=2−u=8

×Pf

2
64 κ̂abðuÞ −

Iaþ2ð
ffiffi
u

p Þþ
ffiffi
u

p
2þ ffiffi

u
p Iaþ3ð

ffiffi
u

p Þ
uðaþ2Þ=2

Ibþ2ð
ffiffi
u

p Þþ
ffiffi
u

p
2þ ffiffi

u
p Ibþ3ð

ffiffi
u

p Þ
uðbþ2Þ=2 0

3
75
k−2

a;b¼0

ð29Þ
for k ¼ 2m − 1 odd, suppressing again the u-independent
normalization constants Ĉe=o. Here, κ̂abðuÞ is the limiting
kernel for the skew-orthogonal polynomials with respect to
xwðx; tÞ, which is of a similar structure as Eq. (25). For
ν ¼ 0; 2 the results (28) and (29) were known from
Refs. [25] and [21], respectively.
Equations (26)–(29) constitute our second main result

and are universal. In Fig. 2 they are compared to the
universal microscopic density [15,42] valid for all ν values

FIG. 1 (color online). The gap probability EN;ðν−1Þ=2ðtÞ (straight
lines) for finite N ¼ 10 and ν ¼ 0; 2; 4; 6; 8 (from left to right)
versus numerical simulations (symbols) of 40000 realizations of
Wishart matrices, with C ¼ 1N .

FIG. 2 (color online). Themicroscopic densityρðuÞ (30) (dashed
lines) versus the corresponding smallest eigenvalue distribu-
tion Pðν−1Þ=2ðuÞ (straight lines) for ν ¼ 2; 4; 6 (from left to right).
The smallest eigenvalue nicely follows the density for all ν.
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ρνðuÞ ¼
1

4
½Jνð

ffiffiffi
u

p Þ2 − Jν−1ð
ffiffiffi
u

p ÞJνþ1ð
ffiffiffi
u

p Þ�

þ 1

4
ffiffiffi
u

p Jνð
ffiffiffi
u

p Þ
�
1 −

Z ffiffi
u

p

0

dsJνðsÞ
	
: ð30Þ

We further illustrate the universality of our results by
comparing to numerical simulations with a nontrivial
correlation matrix C for large N, see Fig. 3.
Conclusions and outlook.—We have computed closed

expressions for the distribution of the smallest nonzero
eigenvalue and its integral, the gap probability, for rec-
tangular N × ðN þ νÞ real Wishart matrices with ν even,
both for finite N and in the universal microscopic large
N limit. They only depend on a single kernel instead
of three different ones for the density correlation functions
and are thus much simpler than these known results. We
confirm our findings by numerical simulations, even
including a nontrivial correlation matrix C. This completes
the calculation of all eigenvalue correlation functions in this
classical ensemble of random matrices and shows its
integrable structure. Furthermore, our finite N results allow
us to analyze deviations from the universal large N limit, as
was very recently proposed in Ref. [43] for the chGUE.
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