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We perform dynamical simulations of a two-dimensional active nematic fluid in coexistence with an
isotropic fluid. Drops of active nematic become elongated, and an effective anchoring develops at the
nematic-isotropic interface. The activity also causes an undulatory instability of the interface. This results
in defects of positive topological charge being ejected into the nematic, leaving the interface with a diffuse
negative charge. Quenching the active lyotropic fluid results in a steady state in which phase-separating
domains are elongated and then torn apart by active stirring.
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Many biophysical nematic systems, including micro-
tubule bundles [1], cytoskeletal filaments ordered by mole-
cular motors in motility assays [2], actin filaments [3], cells
[4,5], and dense suspensions of microswimmers [6] are
active,meaning that the constituent particles generatemotion
by dissipating chemical energy, for example from adenosine
triphosphate [7,8]. This motion collectively manifests itself
as a stress that keeps the system out of equilibrium. Active
nematics exhibit rich pattern formation [9–11] and collective
motion [12].
Almost all studies of active nematics thus far have

concentrated on bulk systems. However there are many
examples where active material coexists with an isotropic
fluid. These include active droplets [1,12–14], biofilms,
bacterial colonies, and bacterial carpets [15–17]. Existing
studies include spontaneous division and motility of active
nematic droplets through self-generated flows [13].
However, we are not aware of research reporting the phase
separation of active fluids nor the role of topological
defects in lyotropic active nematics.
Therefore in this Letter we describe the behavior of

active nematic-isotropic mixtures. We show that active
forces lead to nematic anchoring at the interface, as
observed in growing bacterial colonies [18,19]. Moreover,
active forces elongate nematic domains in the direction
parallel (perpendicular) to the director field for extensile
(contractile) systems. The elongated domains are torn
apart by hydrodynamic instabilites, which balance the
tendency to phase ordering, forming a dynamic steady
state with characteristic length scales. Furthermore, we
find that defect formation is dominated by the ejection of
point defects with topological charge þ1=2 from the
interface, leaving the interface itself with a negative
topological charge.
The nematic order of the fluid is described by a

symmetric, traceless tensor Q [20]. We assume that the
director always remains within the plane of the system so

Qαβ ¼ Sð2nαnβ − δαβÞ is two dimensional, with n the
director and S the magnitude of the order. The active
nematic fluid is mixed with an isotropic fluid, and the
amount of each is conserved. We use a scalar parameter ϕ
to measure the relative density of each at a given point.
The free energy of the system is

F ¼
Z

ðfðQ;∇Q;ϕ;∇ϕÞ − μϕÞd2r; ð1Þ

with
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where A, C, K, and L are positive constants. The first
term in f is the bulk energy of the binary fluid [21,22],
which has two equilibria at ϕ ¼ 0; 1. The second term is
the bulk energy of the liquid crystal [20], and here it
couples S to ϕ. We note that QαβQαβ ¼ 2S2, and thus
isotropic order is favored in regions where ϕ ¼ 0, while
nematic ordering with S ¼ Snem is favored where ϕ ¼ 1.
This biphasic bulk energy permits a diffuse interface
when combined with the third and fourth terms, which
penalize gradients in ϕ and Q, respectively [22,23]. Both
terms contribute to the surface tension of this interface,
and the fourth term also provides the nematic elasticity in
the bulk. μ is a Lagrange multiplier that conserves the
integrated value of ϕ.
The order parameters ϕ and Q evolve according to the

convection-diffusion equations [24,25]
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∂tϕþ ∂βðϕuβÞ ¼ M∇2μ; ð4Þ

ð∂t þ uκ∂κÞQαβ ¼ −ζΣαβκλΛκλ − TαβκλΩκλ þ ΓHαβ: ð5Þ

On the right-hand side of Eq. (5) the first two terms form
the upper convected derivative, which accounts for the
rotation of the nematic under shear. ζ is the tumbling
parameter and

Λαβ ¼
1

2
ð∂βuα þ ∂αuβÞ; Ωαβ ¼

1

2
ð∂βuα − ∂αuβÞ;

Σαβκλ ¼ S−1nemQαβQκλ − δακðQλβ þ SnemδλβÞ
− ðQαλ þ SnemδαλÞδκβ þ δαβðQκλ þ SnemδκλÞ;

Tαβκλ ¼ Qακδβλ − δακQβλ: ð6Þ

The final term describes the relaxation of Q to the
minimum of the free energy:

Hαβ¼
1

2
ðδαβδκλ−δακδβλ−δαλδβκÞ

� ∂f
∂Qκλ

−∂γ

� ∂f
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��
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ð7Þ

The total density ρ and the velocity u obey

∂tρþ ∂βðρuβÞ ¼ 0; ð8Þ

∂tðρuαÞ þ ∂βðρuαuβÞ ¼ −buα þ ∂βð2ρηΛαβ −p0δαβ þΠαβ

þfζΣαβκλ þTαβκλgHκλ − χQαβÞ;
ð9Þ

where b is a drag coefficient accounting for friction from
the substrate. There are four contributions to the stress on
the right-hand side of Eq. (9). The first and second are the
usual Newtonian stress, with η the kinematic viscosity and
p0 ¼ ρ=3 the isotropic pressure. The third and fourth are
elastic stresses, with

Παβ ¼ ðf − μϕÞδαβ −
∂f

∂ð∂βϕÞ
∂αϕ −

∂f
∂ð∂βQκλÞ

∂αQκλ:

ð10Þ

The final term is the active stress. χ is the strength of
activity, and a positive (negative) χ corresponds to an
extensile (contractile) material [26–28].
We solve the equations of motion using a hybrid lattice

Boltzmann method. This involves solving Eqs. (4)–(5)
using finite difference methods, and Eqs. (8)–(9) using a
lattice Boltzmann algorithm [12,26]. Parameters used are
Snem ¼ 1, A ¼ 0.08, C ¼ 0.5, L ¼ 0.005, K ¼ 0.01,
Γ ¼ 0.1, M ¼ 0.1, η ¼ 1=6, b ¼ 0.1, ζ ¼ 0.3 (tumbling

regime) and on average ρ ¼ 40. For these parameters, the
characteristic interface width is ∼3 lattice spacings.
As a first illustration of the consequences of active stress

in a lyotropic nematic, we show, in Fig. 1, how a circular,
extensile, active drop evolves with time. The drop extends
parallel to the director field, and the surface alignment
becomes predominantly parallel to the interface.
We emphasise that, while many models incorporate

anchoring (a preferred orientation of the director field)
at the interface via coupling terms in the free energy
[23,29,30], such terms are not included in Eq. (2). Thus,
our system does not exhibit any anchoring of thermody-
namic origin (in contrast to the active drops in [13]). Rather,
the active stresses alone generate a preferential orientation—
a phenomenon that we shall therefore term “active
anchoring.” From Eq. (9), we identify the active force
density as ∇ · ð−χQÞ. Denoting the unit normal to the
interface (pointing out of the nematic region) as m, the
force density is

Factive ¼ χfj∇Sjð2ðm · nÞn −mÞ
− 2Sðnð∇ · nÞ þ ðn ·∇ÞnÞg: ð11Þ

This active force has contributions fromgradients in both the
nematic order and orientation. The latter may be neglected if
distortions in the director are small. In this approximation,
the components of Factive perpendicular and parallel to the
interface area are

Factive⊥ ¼ χj∇Sjð2ðm · nÞ2 − 1Þ; ð12Þ

Factive
∥ ¼ 2χj∇Sjðm · nÞðl · nÞ; ð13Þ

where l is the unit vector tangent to the interface.
Both components contribute to active anchoring, but in
different ways. First we consider the normal force compo-
nent. From Eq. (12), we find that Factive⊥ ¼ χj∇Sj where m
and n are parallel, and Factive⊥ ¼ −χj∇Sj where they are
perpendicular. Thus, for extensile activity, the drop is
extended where the interfacial alignment is homeotropic,
and compressed where it is planar, causing an initially
circular drop to be stretched along the nematic director as
shown in Fig. 1. As a result, the director field is oriented
parallel to the interface everywhere except at the ends of the
elongated structure. In the case of a contractile suspension,
the forces are reversed, so that the nematic drop extends
perpendicular to the nematic director, corresponding to
homeotropic active anchoring.
However, elongation is not the sole cause of active

anchoring, as can be seen by considering the tangential
force, Eq. (13). When the director is oblique to the interface
(i.e. neither homeotropic nor planar), Factive

∥ will be non-
zero, generating a flow along the interface. The resulting
velocity gradient between the interface and the bulk
nematic has a tendency to rotate the director (assuming
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the system is flow-tumbling), as dictated by the convective
terms of Eq. (5). In the extensile case, the director is in
stable equilibrium when planar to the interface, as illus-
trated schematically in Fig. 2(a). In the contractile case, the
flow direction is reversed, rotating the director towards the
homeotropic configuration. Thus, this rotation effect acts
in accord with the elongation effect to produce the active
anchoring.
Planar anchoring can be observed in studies of growing

bacterial colonies [18,19]. We conjecture that in such
systems, the division of bacteria along their long axis
provides an extensile stress and hence active anchoring
may provide an explanation for this behavior.
In the last frame of Fig. 1, the well-known hydrodynamic

instability of an extensile active nematic to a bend defor-
mation [7] is starting to develop. In a bulk system this leads
to active turbulence. To understand its role in the behavior
of a lyotropic active fluid, Fig. 3 shows the time evolution
of a stripe of extensile, active nematic. The bend instability
leads to pronounced undulations of the stripe. Note the
asymmetry between the rounded convex (with respect to
the nematic) sections of interface and the cusplike concave
sections.
In Fig. 3(d), topological defects of charge þ1=2 pinch

off from the cusps and migrate into the nematic. This is in
contrast to bulk active nematics, where topological defects
of charge þ1=2 and −1=2 are always produced in pairs
[1,10,11]. Here, we will need to characterize topological
charge in terms of a diffuse charge density, instead of point
charges. We thus define the topological charge contained
within a boundary loop ∂R,

m ¼
I
∂R

1

8π
ðQxα∂βQyα −Qyα∂βQxαÞdrβ; ð14Þ

which returns the standard definition [20] for S ¼ 1.
Green’s theorem gives the corresponding charge
density as

q ¼ 1

4π
ð∂xQxα∂yQyα − ∂xQyα∂yQxαÞ: ð15Þ

Note that Eq. (15) predicts that curved interfaces in general
have a charge density. Assuming the director takes a
constant orientation with respect to the interface, the charge
density is positive for concave and negative for convex
interfaces. However, it is apparent from Figs. 3(c) and 3(d)
(right-hand side) that the charge is not symmetrically
distributed: the negative charge becomes widely spread
over long regions of gentle curvature, while the positive
charge is far more concentrated at sharp cusps. Eventually
the positive point defects are pinched off, leaving behind a
net negative charge at the interface.
To understand this asymmetry, we look again at Eq. (11).

Assuming active anchoring (i.e. n remains perpendicular to
m in the extensile case) and taking into account gradients of
n, the force is

Factive⊥ ¼ χf−j∇Sj − 2Sm · ðn · ∇Þng: ð16Þ

The first term represents the force arising from the gradient
in nematic order, which always acts inwards. The second
term may be of either sign depending on the position along
the interface. As Fig. 2(b) illustrates, on the concave parts
of the interface −ðn ·∇Þn is opposed to m and therefore
this force contribution is directed inwards, while at the
convex parts, −ðn · ∇Þn is aligned with m and hence
the force contribution is directed outwards. Thus, in the
concave parts, the two force contributions combine to give
a strong force that pulls the interface sharply inwards, while
in the convex parts, the two contributions are opposed so
the resultant force is weak. For the case of a contractile
active nematic, the evolution of topological charge is the
same because the change of sign of χ is canceled out by
the change in active interface alignment from planar to
homeotropic.

FIG. 1 (color online). Evolution with time of an initially circular
drop of extensile active fluid. The nematic phase is white, and
the isotropic phase is blue. The black lines show the scaled
director Sn.

FIG. 2 (color online). (a) Schematic illustration showing the
tangential force and resulting flow field for different director
orientations (thick black lines) at the interface. (b) Schematic
illustration of the forces acting at a curved interface.
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When a uniformly mixed state of a lyotropic nematic is
quenched to below its ordering temperature, the free energy
in Eq. (1) drives it to phase-separate into nematic and
isotropic regions. However, activity disrupts and limits the
phase ordering. Nematic regions are carried around by the
flow, dynamically colliding, breaking up, coalescing, and
being re-formed, and a steady state is reached where the
domains size saturates. This is illustrated in Fig. 4 where we
show a typical configuration for a system of size 480 × 480
(only a 240 × 240 portion is shown) lattice spacings with
periodic boundary conditions, activity χ ¼ 0.005, and
equal concentrations of the isotropic and nematic phases.
A movie showing the evolution of the fields is available in
the Supplemental Material [31].
To quantify the characteristic domain size of the system,

we construct correlation functions. The elongation effect
suggests that we need two such functions, separately
measuring the correlations parallel and perpendicular to
the director. To this end, we define,

c∥ðdÞ ¼
1

N

X
r

1

2
gðr; rþ dÞðd̂αd̂βQαβðrÞ þ 1Þ; ð17Þ

c⊥ðdÞ ¼
1

N

X
r

1

2
gðr; rþ dÞðd̂αd̂βϵακϵβλQκλðrÞ þ 1Þ; ð18Þ

where r are the lattice nodes of the simulation,N is the total
number of nodes, d̂ is the unit vector along the displace-
ment vector d, and

gðr; r0Þ ¼ ð2ϕðrÞ − 1Þð2ϕðr0Þ − 1Þ: ð19Þ

Radial averages of c∥ and c⊥ are plotted for an extensile
system with activity χ ¼ 0.005 in Fig. 5(a). c∥ decays more
slowly than c⊥, which shows anticorrelations at medium
distances. This is in agreement with the elongated domains
that we see in Fig. 4. Figure 5(b) shows an extensile system
with weaker activity. The correlation lengths are longer,
indicating that the lower stirring of the system allows for
the formation of larger domains, but the anisotropy
remains. Figure 5(c) compares a passive system at a
moment during the phase ordering process confirming that
there is no domain anisotropy relative to the orientation of
the director.
Another way in which the active lyotropic mixture is

distinguished from both the passive lyotropic mixture and a
pure active nematic is in the distribution of topological
charge. In the case of a pure active nematic, with no
isotropic regions, topological charge evolves through the
creation and annihilation of pairs of þ1=2 and −1=2
defects [10,11]. This is shown in Fig. 6(a), where charge
is concentrated, with positive (dark) and negative (light)

FIG. 4 (color online). A typical configuration of the concen-
tration ϕ and the director in the steady state of a system with 50%
nematic and activity χ ¼ 0.005. The right panel is an enlargement
of the orange square.

FIG. 5 (color online). Plots of the radial averages of the
correlation functions c∥ (red circles) and c⊥ (blue squares)
against radial distance d for 50% nematic mixtures with
(a) χ ¼ 0.005 (extensile) at the steady state, (b) χ ¼ 0.0001 at
the steady state, and (c) χ ¼ 0 (passive) at a point in time during
the phase separation process.

FIG. 6. Charge density q shown for a 275 × 275 area of the
simulation box for (a) 100% nematic with χ ¼ 0.005, (b) 50%
nematic with χ ¼ 0.005, and (c) 50% nematic with χ ¼ 0.

FIG. 3 (color online). Interface instability and defect formation
in a stripe of extensile active nematic, with time running from
(a) to (d). For panels (c) and (d), the right-hand side shows the
charge density q, with dark (light) shades corresponding to
positive (negative) charge. We omit charge density plots for
(a) and (b) since there is little separation of charge at these stages.
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point charges equally abundant. Figure 6(b) shows a system
with the same value of χ, but with 50% nematic. A large
number of positive point charges remain, but the negative
charge is predominantly smeared along the interfaces. For
comparison, Fig. 6(c) shows that there is little separation of
charge in the case of a passive fluid undergoing phase
separation.
To summarize, we have shown that active stresses at the

interface between an active nematic and an isotropic fluid
lead to domain elongation, effective anchoring, and the
asymmetric production of topological defects. Moreover,
active stirring causes phase-separating mixtures to reach a
steady state characterized by finite domain lengths. To
assess the robustness of these results, in the Supplemental
Material [31] we present simulations for different system
parameters, and find that the phenomena observed in
Figs. 1 and 3 are qualitatively unchanged. We hope that
our predictions will help to motivate and explain experi-
ments on systems as diverse as bacterial colonies, crowded
microswimmers, and driven microtubule suspensions.
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