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We study consequences of long-range elasticity in thermally assisted dynamics of yield stress materials.
Within a two-dimensional mesoscopic model we calculate the mean-square displacement and the
dynamical structure factor for tracer particle trajectories. The ballistic regime at short time scales is
associated with a compressed exponential decay in the dynamical structure factor, followed by a
subdiffusive crossover prior to the onset of diffusion. We relate this crossover to spatiotemporal correlations
and thus go beyond established mean field predictions.
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Relaxation of the microscopic structure in glasses, and
more generally in soft yield stress materials, is a topic of
long-standing interest and great complexity. Broad ranges
of time, energy, and length scales are involved, together
with nonequilibrium aspects such as aging and a strong
dependence on the sample preparation scheme. As a result,
no unique scenario has emerged to describe the relaxation
of density fluctuations in systems that, quenched from a
liquid into a glassy (solid) state, still display internal
dynamics strong enough to produce structural relaxation
on a measurable time scale. The complexity of the
relaxation is usually quantified by the manner in which
it deviates from exponential. In many cases, stretching,
corresponding to a broad distribution of relaxation times, is
observed. However, the opposite situation of compressed
relaxation (i.e., faster than exponential) has emerged in the
last years as a new paradigm. In this work, we confirm
through the numerical study of a simplified model that this
behavior can result from thermally activated plastic events
akin to the shear transformations observed in yield stress
solids undergoing external deformation.
A milestone in the experimental analysis of the relax-

ations processes at hand has been achieved by a series of
dynamic light-scattering experiments on colloidal gels
[1–5]. More recently, x-ray photon correlation spectros-
copy [6] has been used to study slow dynamics, not only in
supercooled liquids [7], colloidal suspensions [8], and gels
[9,10], but also in hard amorphous materials like metallic
glasses [11,12]. A common denominator of these experi-
ments is the decay of the dynamical structure factor as a
compressed exponential in time t and scattering vector q:
fðq; tÞ ∼ exp½−ðt=τfÞγ�, with τf ∼ q−n, n≃ 1, and shape
parameter γ > 1. The observed dynamics was a priori
unexpected, not only because of the faster than exponential
decay of the correlations but also because of the ballistic
dynamics contrasting the usual diffusive behavior
(τf ∼ q−2) in molecular dynamics simulations of glassy
systems (see, for example, [13]). Simulations on a gel-
former model [14,15] have shown a compressed

exponential decay of fðq; tÞ, but this was explained as a
trivial effect of Newtonian dynamics.
Originally, a heuristic explanation for the observed

phenomena was based on the syneresis of a gel: the gel
shrinks locally and the inhomogeneity acts as a dipole force
with a long-range elastic effect [1]. A simple mean-field
model approach [16–18] further encouraged the view that
anomalous relaxation has its origin in elasticity effects and
stressed its dependence on the time scales considered. On
the other hand, this approach was reported to fail in
emulating a q dependence of γ observed in experiments
[5,7,10]. Independently, a phenomenological continuous
time random walk (CTRW) model with Lévy flights was
introduced [5]. It was used to fit the crossover, with q,
between compressed and noncompressed behaviors.
However, the assumed Poissonian distribution for the
number of events and the particular power-law distribution
for the displacements have never been confirmed.
In this Letter, we propose a novel minimalistic model at

the mesoscale for thermally activated relaxation dynamics
in yield stress materials. After introducing in the first part
the main assumptions and the model description, we
validate our results against mean-field predictions for
elasticity effects in the relaxation. Later, we go beyond
mean field and reveal effects due to correlations in the
dynamics that give rise to new interesting phenomena. We
conclude with a discussion of our results and their impact
on the understanding of recent experimental findings.
The model.—Our model for the coarse-grained relaxa-

tion dynamics is based on two main ingredients: thermally
activated yield events (plastic rearrangements) and a long-
range elastic response of the surrounding medium. To
simplify further an a priori tensorial description, we
assume rearrangements occurring along only one axis,
such that we can describe the system with scalar quantities
for local stresses and deformations [19,20].
The yielding of a site leads to a rearrangement with a

local deformation rate given by ∂tϵ
plðr; tÞ ¼ nðr; tÞεðr; tÞ=

ð2τÞ, where τ ¼ 1 is a mechanical relaxation time defining
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our time scale and nðr; tÞ is a local “state variable”
indicating whether a site is yielding (n ¼ 1) or not
(n ¼ 0). The typical strain ε caused by a rearrangement
is given by εðr; tÞ ¼ �ε0 integrated over the average
duration of an event, depending only on a sign according
to the yielding direction [21].
The response of the surrounding medium is modeled by

using the Eshelby theory of elasticity [22]. If Gðr; r0Þ is the
solution for the far field elastic response to a deformed
inclusion, an overdamped dynamics for the coarse-grained
scalar stress field σðr; tÞ reads

∂tσðr; tÞ ¼ 2μ

Z
dr0Gðr; r0Þ∂tϵ

plðr0; tÞ; ð1Þ

where μ is the elastic modulus. The propagator for an
infinite system in polar coordinates [19,22] is G∞ðr; θÞ ¼
2 cosð4θÞ=πr2. We discretize Eq. (1) in time and space on a
square lattice (typical linear sizes L ¼ 28; 29) with periodic
boundary conditions. We solve the evolution of σðr; tÞ
using a pseudospectral method and the discretized propa-
gator in Fourier space [19,20].
The stochastic activation rules for nðr; tÞ depend only on

the local stress σ, two symmetric yield stresses σY ¼ �σ0,
that mimic the local energy barrier to yield, and the
temperature T. Sites with jσj > jσYj become immediately
active (n∶0 → 1), while the activation probabilities for sites
with jσj < jσYj read

ponð�Þ ¼ Γ0 exp

�
−ðσY2 ∓ sgnðσÞσ2Þ

2κT

�
: ð2Þ

Independent of the stress value, active sites deactivate
(n∶1 → 0) at a fix rate, poff ¼ τres

−1. Γ0 is an attempt
frequency and τres the typical duration of a restructuring
event. All characteristic times are chosen to be equal to
τ ¼ 1=Γ0 ¼ τres ¼ 1, unless otherwise specified. κ ¼
μV−1

0 kB is a unitary constant that provides the right
magnitudes and σ0 ¼ 1 defines the stress units. The lack
of disorder in the local yield stress leads to steady-state
dynamics without aging effects. This simplifies enor-
mously the analysis of the dynamics. For each temperature
T, we reach a unique steady state characterized by stress
fluctuations around zero with an approximately Gaussian
distribution.
To establish an analogy with experiments, we need to

introduce particles in the model. We calculate at each time
step the vectorial displacement field uðr; tÞ associated with
the discretized plastic strain field [19] and introduce tracer
particles that follow this field, with no further interactions,
mimicking the underlying particle dynamics [23]. For
example, considering a single event at the origin, the
resulting displacement field reads uðrÞ ¼ ð2l2ε0xy=πr4Þr,
with l the lattice parameter and unit of length. The typical
strain change due to a rearrangement is expected to be

material dependent. We choose here ε0 ¼ 1, a rather large
value that enhance spatial correlations, and make the result-
ing effectsmore visible. Qualitatively, the observed phenom-
ena persist for smaller ε0, although possibly less noticeable.
The observed dynamical features can essentially be

separated in two categories: On one hand, part of the
phenomenology is purely due to the characteristic spatial
decay of the elastic propagator and can easily be captured in
mean-field descriptions. On the other hand, the presence of
spatiotemporal correlations in the system leads to the
prediction of a new dynamical regime. Yet, before going
into the discussion of the correlation effects, we show the
compatibility of our model with the mean-field predictions
[16–18].

FIG. 1 (color online). Tracer particle dynamics. Numerical
measurements of self-diffusion coefficients and dynamical struc-
ture factors in the steady state. (a) Diffusion coefficient D ¼
hðΔrÞ2i=ð4tÞ as a function of time t for different temperatures
Ti ¼ 0.05, 0.07, 0.1, 0.2. Pointed lines guide the eye to
distinguish three different dynamical regions: (I) ballistic, (II)
crossover, (III) diffusive. The gray curves show results for the
random model (see text) with a mean activity ai ≈ 3.1e−0.48=Ti

corresponding to the same temperatures. (b) Dynamical structure
factor Sðq; tÞ for T ¼ 0.2 as a function of q1.125t for time intervals
corresponding to the ballistic regime (I), fitted by an compressed
exponential with shape parameter γ ≈ 1.8 and αb ≈ 0.07 (dashed
line). The inset shows the raw data. (c) Dynamical structure factor
Sðq; tÞ for T ¼ 0.07 as a function of q2.3t for time intervals
corresponding to the crossover regime (II), fitted by a stretched
exponential with shape parameter γ ≈ 0.86 and αs ≈ 0.0015
(dashed line). The inset shows the raw data. (d) Dynamical
structure factor Sðq; tÞ for T ¼ 0.2 as a function of q2t for time
intervals corresponding to the diffusive regime (III), fitted by a
pure exponential with shape parameter γ ¼ 1 and αD ≈ 0.1
(dashed line). The inset shows the raw data.
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Elasticity effects.—In order to compare our thermal
model with the mean-field results, we implement inde-
pendently an analogous system with the sole difference of
having randomly activated sites, a Poissonian rule for
activation instead of the stress-dependent rule (2). In this
second random model, we control the activity, that is, the
number of events per unit time. We measure the mean
activity a ¼ hð1=NÞPinii (time average) in the thermal
model and plug it in the random model as a parameter to
compare equivalent systems [24].
In Fig. 1(a) we compare for both models the evolution of

the diffusion coefficient DðtÞ ¼ hΔr2i=ð4tÞ, where the
mean square displacement hΔr2i on a time window t is
averaged both over number of tracers (typically 213; 214)
and sliding time t0, for distances Δri ¼ jriðt0 þ tÞ − riðt0Þj
traveled by each tracer i. We observe that the initial ballistic
regime (regime I), whose duration is related with the
persistence τres of the events, does not depend on the
model. Also, for both dynamics, we find a long time
diffusive behavior, only with different values of the
diffusion coefficient (regime III). Although there exists a
third intermediate subdiffusive regime in the spatial model
(regime II), we focus first on the two regimes that can be
predicted by mean-field considerations.
In analogy with experimental measurements, we calcu-

late the dynamical structure factor,

Sðq; tÞ ¼ 1

M

��XM
n¼1

cos½q · ðrnðtþ t0Þ − rnðt0ÞÞ�
��

t0;jqj¼q

;

where M is the total number of tracers and the brackets
average over the sliding time window t0 and the different
discretized wave vectors that share the same modulus [25].
From mean-field considerations [16], we expect for the
ballistic regime a decay of Sðq; tÞ as a compressed
exponential with a dimensionality-dependent shape param-
eter γ2d ¼ 2 (γ3d ¼ 3=2) [26]. If we search for the best fit of
the data for τf ∝ q−1, we find indeed γ ≈ 2, but the best
collapse of the data is achieved for τf ∝ q−1.125 yielding a
fit with γ ¼ 1.8 [see Fig. 1(b)]. In the diffusive regime, we
can collapse the data by plotting Sðq; tÞ as a function of q2t,
and we obtain a pure exponential decay with γ ¼ 1, as
expected [see Fig. 1(d)]. Even when we show these
results for a particular temperature, they hold for all the
range of analyzed temperatures (and further, also in the
equivalent random model); only the prefactors αb, αd are T
dependent.
Assuming a long-range elastic response to the local

relaxation processes, we expect the displacement field to
decay as u ∼ 1=rd−1, where r is the distance to the event
and d the dimensionality of the system. From a mean-field
analysis, the distribution of particle displacements is
expected to decay as PðuÞ ∝ u−ð2d−1Þ=ðd−1Þ for large u,
yielding for our two-dimensional study PðuÞ ∝ u−3, with a
finite mean value. This results directly from the strong

elastic response at small distances. The probability for
small displacements, on the other hand, should grow as
ud−1, due to the far field effect of the propagator. The
crossover between these two regimes should depend on the
density of events, that is, on the activity a. We confirm these
scalings within our simulations for low temperatures [see
Fig. 2(a)]. For high temperatures, we expect the assump-
tions of the mean-field description to break down due to the
high density of events that leads to a screening of the large
displacements.
Correlations effects.—One of the main differences of the

thermal model compared to random dynamics is the
appearance of subdiffusion. While the random model
changes from a ballistic to a pure diffusive behavior for
all activation probabilities, a comparable (same activity)
thermal model, where spatial correlations are allowed to
arise, develops an intermediate subdiffusive regime for low
enough temperatures [regime II in Fig. 1(a)].
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FIG. 2 (color online). Statistical features of the thermally
activated dynamics. In all panels, circles correspond to the
thermal model for temperatures Ti ¼ 0.04, 0.05, 0.07, 0.1,
0.15, 0.2, while gray triangles stand for the random model at
a≃ 0.0034. (a) Distribution of absolute displacements per unit
time u ¼ juj of the tracer particles for different temperatures,
rescaled by the square root of the average activity aðTiÞ.
Dashed lines display power laws. The inset shows the data
without rescaling. (b) Rescaled local probability distribution
ψðτevÞ=aðTiÞ for rescaled waiting times aðTiÞτev between events.
The power-law dashed line serves as a guide to the eye. The inset
shows raw data. (c) Two time autocorrelation function CuðtÞ of
the vectorial displacements of tracer particles. The inset shows the
result of a CTRWmodel with the Laplace transform of ψðaτevÞ as
an input. (d) Two time autocorrelation function CσðtÞ of the local
stress as a function of the rescaled time aðTiÞt. The inset shows
raw data.
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To determine the origin of this effect, we first check if the
tracer displacements are essentially changed when consid-
ering systems with and without spatial correlations. We find
that the distribution for the absolute displacements is not
altered [see Fig. 2(a)]. The change of the dynamics is rather
due to negative correlations in the two-time autocorrelation
function of the vectorial displacements [Fig. 2(c)]. Note
that the resolution of the correlation measurement is not
sufficient to determine the extension of the subdiffusive
regime, which instead is seen in the intermittent dynamics
of the local rearrangements [Fig. 2(b)].
Defining τev as the elapsed time between two consecu-

tive activations of the same site, the resulting distribution
ΨðτevÞ shows a trivial exponential shape in the random case
(expected by construction) but a power-law form with an
exponential cutoff in the thermal model, well scalable with
the mean activity in a master curve ΨðaτevÞ ∼ ðaτevÞ−2=3.
We devise a simplified CTRW model [27], where we
assume that the tracer particles only move when there is an
event close by. In this picture the mean-square displace-
ment is given by the number N of events in a time interval t
times the typical displacement during jumps. The Laplace
transform of NðtÞ is related to the waiting time distribution
as ~NðsÞ ¼ ~ψðsÞ=ðsð1 − ~ψðsÞÞ and is shown in the inset of
Fig. 2(c). We observe two regimes: one proportional to s−2,
this is, the long time diffusion, and a second one propor-
tional to s−5=3, subdiffusive. This leads to a prediction of
hΔr2iðtÞ ∝ t1=3 that does not compare well with an expo-
nent of about 0.85 estimated from a power-law fit in the
subdiffusive regime corresponding to T1 in Fig. 1(a). We
expect this to be due to the rough assumption of dynamical
arrest between large jumps. Still, the qualitative picture and
the duration of the subdiffusive regime are captured. We
deduce that this regime results from the negative correla-
tions in the displacements combined with the intermittent
dynamics for the activity, a feature that we like to call
“statistical caging.”
It is the local activity intermittency (power law distrib-

uted) that allows the emergence of a correlated dynamical
regime, like the subdiffusive one observed here, and gives
rise to crossovers in time scale that will impact any
measurement covering them. For instance, coming back
to the analysis of Sðq; tÞ, we notice that during the
subdiffusive regime, the relaxation time τr scales as τr ∼
q−n with n > 2. When rescaling time and wavelengths as
qnt with the appropriate n, curves corresponding to a time
window where DðtÞ decreases, collapse onto a new master
curve Sðq; tÞ ¼ exp½−αsðqntÞγ�, now with γ < 1. This
anomalous diffusion with a stretched behavior of Sðq; tÞ
is not accessible in a mean-field approximation, and we
could expect it a priori to be realized in experiments.
Discussion.—Despite the strong simplifications we

made to derive our model description, we expect the
qualitative features to be relevant in real systems. We
tested our model reproducing mean-field predictions for the

distribution of the absolute values of the tracer displace-
ments and related values of the dimension-dependent shape
parameters in the decay of the dynamical structure factor
Sðq; tÞ. We perfectly fit Sðq; tÞ in the ballistic regime with a
compressed exponential of shape parameter γ ≈ 1.8 (given
τf ∝ q−1.125), a value close to expected mean-field value in
two dimensions γMF ¼ 2. We have observed (data not
shown) that we further approach γ ≈ 2 when we address
smaller time scales compared to the event duration by
increasing τres and that this is accompanied by a clearer
ballistic (τf ∝ q−1) scaling of the curves. Note that the
anomalous structural relaxation coexists with a stretched
exponential decay of two time autocorrelations in the local
stresses [Fig. 2(d)].
We insist that the commonly referenced γMF ¼ 3=2 is

valid in three dimensions only and for times smaller than
the typical rearrangement duration. We observe that the
comparison between experiments and the mean-field pre-
diction is frequently inaccurate in the literature, failing in
basic aspects as dimensionality mismatching and/or
overlooking the range of validity of the predictions.
Interestingly, the observed value γ ≈ 1.8 coincides with
experimental results on effectively two-dimensional sys-
tems in the high-density and small q regime [10]. In that
work, a q dependence of the shape parameter is also
reported. We think that this feature is not captured by our
model since it considers only pointlike rearrangements and
does not resolve the scales comparable to their size.
Experimental estimations of rearrangement typical size
and duration are fundamental to interpret the q dependence
of the measured shape parameter and compare with
theoretical predictions. Such information is also indispen-
sable to distinguish between a ballistic motion ruled by
typical displacements induced by a single rearrangement
and one (yet not acknowledged in simulations) caused by
correlations among events instead.
We could claim at this point that even when aging is

typically present in all experimental studies reporting
compressed exponentials and actually affects the typical
relaxation time, it is not necessarily a key ingredient to
observe this kind of phenomenology. In fact, the same kind
of relaxation has been reported very recently in a stationary
state [28], free of aging.
Beyond the mean field results, we find that, at least in

two-dimensional systems, correlations between events lead
to a partial confinement of the tracers generated by an
evolving displacement field with in time anticorrelations.
This phenomenon is a priori different from the traditional
atomic caging effect that happens at smaller length and time
scales. We call it “statistical caging.” Instead of enhancing
the persistence of the tracer particles as often assumed in
the literature, correlations lead in our model to subdiffusive
behavior.
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