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We present a microscopic theory of diffusive magnetotransport in Weyl metals and clarify its relation to
the chiral anomaly. We derive coupled diffusion equations for the total and axial charge densities and show
that the chiral anomaly manifests as a magnetic-field-induced coupling between them. We demonstrate that
a universal experimentally observable consequence of this coupling in magnetotransport in Weyl metals is a
quadratic negative magnetoresistance, which will dominate all other contributions to magnetoresistance
under certain conditions.
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Weyl semimetals have attracted considerable attention
recently as the first realization of a metallic, yet topologi-
cally nontrivial state of matter [1–4], as anticipated some
time ago by Volovik [5]. Observation of the closely related
Dirac semimetals [6–13] clearly makes the experimental
realization of Weyl semimetals only a matter of time.
The most distinctive observable spectroscopic feature of

Weyl semimetals is the presence of the so-called Fermi-arc
surface states [1]. It is of great interest, however, to find
similar smoking-gun features of Weyl semimetals in
response, especially in transport. These do exist and have
been described as being consequences of a chiral anomaly,
i.e., anomalous nonconservation of the numbers of Weyl
fermions of distinct chiralities [14–24]. Notably, Son and
Spivak [17] have proposed that in nonmagnetic inversion-
asymmetric Weyl semimetals the chiral anomaly leads to a
novel kind of weak-field magnetoresistance: negative and
quadratic in the magnetic field.
However, while the chiral anomaly is a well-defined

concept in the context of relativistic field theory [25,26],
where massless fermions in unbounded momentum space
possess exact chiral symmetry, violated by the anomaly,
the situation is less clear in the condensed matter context.
Even though chiral symmetry may be formally defined in a
low-energy model of a Weyl semimetal, in which the band
dispersion is approximated as being exactly linear and
unbounded, no real microscopic model of Weyl semimetal
actually possesses such a symmetry, simply because the
momentum space in this case is compact, being confined to
the first Brillouin zone (BZ). Since the chiral symmetry is
not present to begin with, it is then unclear how meaningful
it is to speak of its violation by the chiral anomaly and the
physical consequences of this violation.
In this Letter we clarify the issues raised above. Starting

from a microscopic model of a Weyl semimetal [3], which
does not possess chiral symmetry, we demonstrate that one
may, nevertheless, define a microscopic quantity, which we
call axial charge density in analogy to the corresponding
concept in relativistic field theory, and show that this

quantity may be expected to be conserved or nearly
conserved in the absence of an external magnetic field,
when one is not too close to the phase boundaries at which
the Weyl semimetal phase disappears. We then derive
hydrodynamic (diffusion) equations, which govern coupled
evolution of the axial and the total charge densities in the
presence of an external magnetic field. The near conserva-
tion of the axial charge density at the microscopic level
translates into long relaxation time at the level of hydro-
dynamic equations. We demonstrate that when the axial
charge relaxation time is long, any Weyl metal indeed
possesses a large negative magnetoresistance, which is
quadratic in the magnetic field, in agreement with Ref. [17].
We show, however, that this effect is in fact even more
universal than suggested in Ref. [17], and characterizes
magnetic Weyl semimetals just as well as the inversion-
asymmetric ones. In this sense, quadratic negative weak-
field magnetoresistance may be regarded as a universal
smoking-gun transport signature of Weyl semimetals and
Weyl metals.
We start from the microscopic model of a Weyl semi-

metal in a magnetically doped topological insulator (TI)
and normal insulator (NI) multilayer, introduced by us
before [3], which has the important virtue of being the
simplest realistic model of a Weyl semimetal

HðkÞ ¼ vFτzðẑ × σÞ · kþ bσz þ Δ̂ðkzÞ; ð1Þ

where Δ̂ðkzÞ ¼ ΔSτ
x þ ðΔD=2Þðτþeikzd þ H:c:Þ. σ and τ in

Eq. (1) are Pauli matrices, describing the spin and the which
surface pseudospin degrees of freedom, b is the spin
splitting due to magnetized impurities, ΔS;D are tunneling
matrix elements, describing tunneling between TI surface
states in the same or neighboring TI layers, and d is the
superlattice period in the growth (z) direction. We will take
ΔS;D to be non-negative for concreteness.
Equation (1) has a Weyl semimetal phase when

bc1≤b≤bc2, where bc1¼jΔS−ΔDj and bc2 ¼ ΔS þ ΔD.
The twoWeyl nodes are located on the z axis in momentum
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space at points kz� ¼ π=d� k0, where k0 ¼
d−1 arccos½ðΔ2

S þ Δ2
D − b2Þ=2ΔSΔD�. The Weyl nodes

are interchanged by the spatial inversion transformation,
with the inversion center placed midway between the
top and bottom surfaces of any TI or NI layer,
I∶HðkÞ → τxHð−kÞτx.
We now introduce the axial charge density operator,

which is analogous to the total charge density in every
aspect, except changes sign when the chiralities of the Weyl
nodes are interchanged (generalization of this concept to
multiple Weyl node pairs is obvious). It can be defined
rigorously and uniquely based on symmetry considerations.
Namely, we define the axial charge density na as a local
operator, that is odd under inversion I and z → −z
reflections, even under time reversal, but odd under time
reversal, combined with rotation of the spin quantization
axis by π around either the x or y axis. This uniquely
determines the explicit representation of the axial charge
density operator to be

n̂a ¼ τyσz: ð2Þ
One may easily check [27] that adding the term −μan̂a,
where μa is the axial chemical potential, to the Hamiltonian
Eq. (1), shifts the Weyl nodes in opposite directions in
energy, giving rise to the energy difference

Δϵ ¼ 2μa ~vF
ΔSd

; ð3Þ

where

~vF ¼ d
2b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb2 − b2c1Þðb2c2 − b2Þ

q
; ð4Þ

is the z component of the Fermi velocity at the location of
the Weyl nodes.
We now ask the following question: does n̂a represent a

conserved quantity, as it would in a low-energy model of
the Weyl semimetal? To answer this we need to evaluate
the commutator of n̂a with the Hamiltonian HðkÞ. It is
convenient at this point to apply the following canonical
transformation to all the operators: σ� → τzσ�, τ� → σzτ�
[3]. Evaluating the commutator at the Weyl node locations,
we now obtain

½HðkÞ; n̂a�kz� ¼ i
b2 − Δ2

D þ Δ2
S

ΔS
τzσz: ð5Þ

This means that na may indeed be a conserved quantity in
the Weyl semimetal or weakly doped Weyl metal, provided
ΔD ≥ ΔS and b ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

bc1bc2
p

; i.e., the magnitude of the spin
splitting is exactly the geometric mean of its lower- and
upper-critical values, at which the transitions out of the
Weyl semimetal phase occur. Otherwise, the commutator is
nonzero and na is not conserved. However, as will be
shown below, the relevant relaxation time may still be long,

even when the above condition is not exactly satisfied,
in which case the axial charge density is still a physically
meaningful quantity.
We now want to derive hydrodynamic transport equa-

tions (diffusion equations) for both the axial charge density
naðr; tÞ and the total charge density nðr; tÞ. As will be
shown below, what is known as the chiral anomaly will be
manifest at the level of these hydrodynamic equations as a
coupling between na and n in the presence of an external
magnetic field. This coupling leads to significant observ-
able magnetotransport effects, provided the axial charge
relaxation time, calculated below, is long enough.
To proceed with the derivation, we add a constant

uniform magnetic field in the ẑ direction B ¼ Bẑ and a
scalar impurity potential VðrÞ, whose precise form will be
specified later. Adopting the Landau gauge for the vector
potential A ¼ xBŷ, the second-quantized Hamiltonian of
our system may be written as

H¼
X
nakykz

ϵnaðkzÞc†nakykzcnakykz

þ
X

nakykz;n0a0k0yk0z

hn;a;ky;kzjVjn0;a0; k0y;k0zic†nakykzcn0a0k0yk0z :

ð6Þ

Here ϵnaðkzÞ are Landau-level (LL) eigenstate energies of a
clean multilayer in magnetic field, n ¼ 0; 1; 2;… is the
main LL index, ky is the Landau-gauge intra-LL orbital
quantum number, kz is the conserved component of the
crystal momentum along the z direction, and a ¼ ðs; tÞ is a
composite index (introduced for compactness of notation),
consisting of s ¼ �, which labels the electronlike (s ¼ þ)
and holelike (s ¼ −) sets of Landau levels, and t ¼ �,
which labels the two components of a Kramers doublet of
LLs, degenerate at b ¼ 0. Explicitly we have

ϵnaðkzÞ ¼ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ω2

Bnþm2
t ðkzÞ

q
≡ sϵntðkzÞ; ð7Þ

where ωB ¼ vF=lB is the Dirac cyclotron frequency and
lB ¼ 1=

ffiffiffiffiffiffi
eB

p
is the magnetic length. We will use units in

which ℏ ¼ c ¼ 1 throughout. The “Dirac masses” mtðkzÞ
are given by mtðkzÞ ¼ bþ tΔðkzÞ where �ΔðkzÞ ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

S þ Δ2
D þ 2ΔSΔD cosðkzdÞ

p
are the two eigenvalues

of the Δ̂ðkzÞ operator.
The LL eigenstates have the following form, typical for

LLs in Dirac systems:

jn; a; ky; kzi ¼
X
τ

½zan↑τðkzÞjn − 1; ky; kz;↑; τi

þ zan↓τðkzÞjn; ky; kz;↓; τi�: ð8Þ

Here
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hrjn; ky; kz; σ; τi ¼
1ffiffiffiffiffi
Lz

p eikzzϕnkyðrÞjσ; τi; ð9Þ

ϕnkyðrÞ are the Landau-gauge orbital wave functions, and
σ; τ are the spin and pseudospin indices, respectively.
Finally, the four-component eigenvector jzanðkzÞi may be
written as a tensor product of the two-component spin
and pseudospin eigenvectors, i.e., jzanðkzÞi ¼ jvanðkzÞi ⊗
juaðkzÞi, where

jvstn ðkzÞi ¼
1ffiffiffi
2

p
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ s
mtðkzÞ
ϵntðkzÞ

s
;−is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − s

mtðkzÞ
ϵntðkzÞ

s !
;

jutðkzÞi ¼
1ffiffiffi
2

p
�
1; t

ΔS þ ΔDe−ikzd

ΔðkzÞ
�
: ð10Þ

As in all Dirac systems, the lowest n ¼ 0 LL is special and
needs to be considered separately. The s quantum number
is absent in this case and taking B > 0 for concreteness, we
have ϵntðkzÞ ¼ −mtðkzÞ, and jvt0ðkzÞi ¼ ð0; 1Þ.
To proceed, we will make the standard assumption that

the impurity potential obeys Gaussian distribution, with
hVðrÞVðr0Þi ¼ γ2δðr − r0Þ. To simplify calculations further
we will also assume that the momentum transfer due to the
impurity scattering is smaller than the size of the BZ, i.e.,
jkz − k0zjd ≪ 1. In this case hutðkzÞjut0 ðk0zÞi ≈ δtt0 , i.e., the t
quantum number may be assumed to be approximately
preserved during the impurity scattering.
We treat the impurity scattering in the standard self-

consistent Born approximation (SCBA). The retarded
SCBA self-energy satisfies the equation

ΣR
nakykz

ðωÞ ¼ 1

Lz

X
n0a0k0yk0z

hjhn; a; ky; kzjVjn0; a0; k0y; k0zij2i

×GR
n0a0k0yk0z

ðωÞ: ð11Þ

Wewill assume that the Fermi energy ϵF is positive; i.e., the
Weyl semimetal is electron doped, and large enough that
the impurity-scattering-induced broadening of the density
of states is small on the scale of the Fermi energy ϵF [28].
We can then restrict ourselves to the electronlike states with
s ¼ þ (we will drop the s index henceforth for brevity), and
easily solve the SCBA equation analytically. We obtain

ImΣR
ntkz

≡ −
1

2τtðkzÞ
¼ −

1

2τ

�
1þmtðkzÞhmti

ϵ2F

�
; ð12Þ

where 1=τ ¼ πγ2gðϵFÞ and

gðϵFÞ ¼
1

2πl2
B

Z
π=d

−π=d

dkz
2π

X
nt

δ½ϵntðkzÞ − ϵF�; ð13Þ

is the density of states at Fermi energy. We have also
introduced the Fermi-surface average of mtðkzÞ as

hmti ¼
1

2πl2
BgðϵFÞ

Z
π=d

−π=d

dkz
2π

X
nt

mtðkzÞδ½ϵntðkzÞ − ϵF�:

ð14Þ

All the necessary information about the density response
of our system is contained in the diffusion propagator, or
diffuson D, given by the sum of ladder impurity-averaging
diagrams [29]. This is evaluated in the standard manner and
we obtain

D−1ðq;ΩÞ ¼ 1 − Iðq;ΩÞ; ð15Þ

where I is a 16 × 16 matrix, given by

Iα1α2;α3α4ðq;ΩÞ ¼
γ2

LxLyLz

Z
d3rd3r0e−iq·ðr−r0Þ

× GR
α1α3ðr; r0jΩÞGA

α4α2ðr0; rj0Þ; ð16Þ

where we have introduced a composite index α ¼ ðσ; τÞ
to simplify the notation. The impurity-averaged Green’s
functions GR;A are given by

GR;A
αα0 ðr; r0jΩÞ ¼

X
ntkykz

hr;αjn; t; ky; kzihn; t; ky; kzjr0; α0i
Ω − ξntðkzÞ � i=2τtðkzÞ

;

ð17Þ

where ξntðkzÞ ¼ ϵntðkzÞ − ϵF.
In general, the evaluation of Eq. (16) is a rather

complicated task, primarily due to the fact that the impurity
scattering will mix different LLs. At this point we will thus
specialize to the case of transport along the z direction only,
as this is where we can expect the chiral anomaly to be
manifest. In this case the contributions of different LLs to
Eq. (16) decouple. Setting q ¼ qẑ, we obtain

Iα1α2;α3α4ðq;ΩÞ¼
γ2

2πl2
BLz

×
X
ntt0kz

hα1jztnðkzþq=2Þihztnðkzþq=2Þjα3i
Ω−ξntðkzþq=2Þþ i=2τtðkzþq=2Þ

×
hα4jzt0nðkz−q=2Þihzt0nðkz−q=2Þjα2i
−ξnt0 ðkz−q=2Þ− i=2τt0ðkz−q=2Þ :

ð18Þ

As mentioned above, I and D−1 are large 16 × 16
matrices, which contain a lot of information of no interest
to us. We are interested only in hydrodynamic physical
quantities, with long relaxation times. All such quantities
need to be identified, if they are expected to be coupled to
each other. One such quantity is obviously the total charge
density nðr; tÞ, which has an infinite relaxation time due to
the exact conservation of the particle number. Another is
the axial charge density naðr; tÞ, which, as discussed above,
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may be almost conserved under certain conditions. On
physical grounds, we expect no other hydrodynamic
quantities to be present in our case. We are thus only
interested in the 2 × 2 block of the matrix D−1, which
corresponds to the coupled evolution of the total and the
axial charge densities. To separate out this block, we apply
the following transformation to the inverse diffusion matrix

D−1
a1b1;a2b2

¼ 1

2
ðσa1τb1Þα2α1D−1

α1α2;α3α4ðσa2τb2Þα3α4 ; ð19Þ

where a1;2, b1;2 ¼ 0, x, y, z. The components of interest
to us are a1;2 ¼ b1;2 ¼ 0 which corresponds to the total
charge density, a1;2 ¼ 0, b1;2 ¼ y, which corresponds to
the axial charge density, and the corresponding cross terms.
Wewill be interested in the hydrodynamic regime, which

corresponds to low frequencies and long wavelengths,
i.e., Ωτ≪ 1 and vFqτ ≪ 1. We will also assume that the
magnetic field is weak, so that ωB ≪ ϵF. Finally, we will
assume that the Fermi energy is close enough to the Weyl
nodes, so that only the t ¼ − states participate in transport
and hm−i ≈ 0, since m−ðkzÞ changes sign at the nodes [24].
In accordance with the above assumptions, we expand

the inverse diffusion propagator to leading order in Ωτ,
vFqτ and ωB=ϵF and obtain after a straightforward but
lengthy calculation

D−1ðq;ΩÞ¼
�
−iΩτþDq2τ −iqΓτ

−iqΓτ −iΩτþDq2τþτ=τa

�
: ð20Þ

Here D ¼ ~v2Fτhm2
−i=ϵ2F is the charge diffusion constant,

associated with the diffusion in the z direction, Γ ¼
eB=2π2gðϵFÞ is the total charge-axial charge coupling
coefficient, and

1

τa
¼ 1 − ð~vF=ΔSdÞ2

ð ~vF=ΔSdÞ2τ
ð21Þ

is the axial charge relaxation rate. Several comments are in
order here. First, note that the axial charge relaxation rate
1=τa ≥ 0, as it should be, and vanishes when ~vF ¼ ΔSd. It
is easy to see that this is identical to the condition of the
vanishing of the commutator of the axial charge operator
with the Hamiltonian Eq. (5). Henceforth we will assume
that this condition is nearly satisfied so that τa ≫ τ.
Second, the situation when ~vF ¼ ΔSd and thus 1=τa
appears to vanish, actually needs to be treated with some
care. Namely, the condition ~vF ¼ ΔSd may be satisfied
exactly only in the limit ϵF → 0. The Fermi velocity
depends on the Fermi energy as [23]

~vFðϵFÞ ¼
d

2ðbþ ϵFÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðbþ ϵFÞ2 − b2c1�½b2c2 − ðbþ ϵFÞ2�

q
:

ð22Þ

When b ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
bc1bc2

p
and thus ~vFð0Þ ¼ ΔSd, the Fermi

energy dependence of ~vF needs to be taken into account.

Expanding to leading nonvanishing order in ϵF we obtain in
this case

1

τa
¼ ϵ2F

Δ2
Sτ

; ð23Þ

i.e., 1=τa is in fact always finite, but may be very small.
We can estimate the minimal value of the axial charge
relaxation rate by setting ϵF ≈ 1=τ in Eq. (23), which
gives ðτ=τaÞmin ≈ 1=ðΔSτÞ2.
We may now write down the coupled diffusion equations

for the total and axial charge densities, which correspond to
the propagator Eq. (20). These equations read

∂n
∂t ¼ D

∂2n
∂z2 þ Γ

∂na
∂z ;

∂na
∂t ¼ D

∂2na
∂z2 −

na
τa

þ Γ
∂n
∂z : ð24Þ

Equation (24) is our main result. Manifestation of the chiral
anomaly in these equations is the coupling between the
total and the axial charge densities, proportional to the
applied magnetic field. Since the total particle number is
conserved, the right-hand side of the first of Eqs. (24) must
be equal to minus the divergence of the total particle
current. Then we obtain the following expression for the
density of the charge current in the z direction

j ¼ −
σ0
e
∂μ
∂z −

e2B
2π2

μa; ð25Þ

where σ0 ¼ e2gðϵFÞD is the zero-field diagonal charge
conductivity, μ and μa are the total and axial electrochemi-
cal potentials, and we have used δn ¼ gðϵFÞδμ,
δna ¼ gðϵFÞδμa. The last relation is valid when ~vF=ΔSd
is close to unity, as seen from Eq. (3). Thus the chiral
anomaly manifests in an extra contribution to the charge
current density, proportional to the magnetic field and the
axial electrochemical potential. This is known as chiral
magnetic effect (CME) in the literature [30–32]. Note that
the CME contribution to the current exists only away from
equilibrium [31,32]; i.e., the second term in Eq. (25) should
never be interpreted as an equilibrium current, driven by a
static magnetic field [33].
To find measurable consequences of the CME contri-

bution to the charge current, we consider a steady-state
situation, with a fixed current density j flowing through the
sample in the z direction. We want to find the correspond-
ing electrochemical potential drop and thus the conduc-
tivity. Assuming the current density is uniform, we obtain
from the second of Eqs. (23)

na ¼ Γτa
∂n
∂z ; ð26Þ

which is the nonequilibrium axial charge density, induced
by the current and the corresponding electrochemical
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potential gradient. Substituting this into the expression for
the charge current density Eq. (25), we finally obtain the
following result for the conductivity:

σ ¼ σ0 þ
e4B2τa
4π4gðϵFÞ

: ð27Þ

In the limit when ϵF is not far from the Weyl nodes, such
that the dispersion may be assumed to be linear, we have
gðϵFÞ ¼ ϵ2F=π

2v2F ~vF, which gives

Δσ ¼ σ − σ0 ¼
e2 ~vFτa
ð2πvFÞ2

�
e2v2FB
ϵF

�
2

; ð28Þ

which agrees with the Son and Spivak result [17]. Thus we
see that a measurable consequence of CME is a positive
magnetoconductivity, proportional to B2 in the limit of a
weak magnetic field. This of course needs to be compared
with the classical negative magnetoconductivity, which is
always present and arises from the B2 corrections to the
diffusion constant D, which we have neglected:

Δσcl
σ0

∼ −ðωcτÞ2; ð29Þ

where ωc ¼ ev2FB=ϵF is the cyclotron frequency. This gives���� Δσ
Δσcl

���� ∼ τa=τ
ðϵFτÞ2

: ð30Þ

Thus the CME-related positive magnetoconductivity will domi-
nate the classical negative magnetoconductivity, provided τa is
long enough.
As a final comment we note that we have so far ignored

the Zeeman effect due to the applied magnetic field. Its
effect is to modify the spin-splitting parameter b as
b → bþ gμBB=2. In principle, the dependence on b does
enter into our final results through the dependence of
the Fermi velocity ~vF on b. Naively, this will then generate
an additional linear magnetoconductivity, which may be
expected to dominate the quadratic one at small fields.
However, the condition of large τa, which is the same as
~vF=ΔSd ≈ 1, is equivalent to the condition bc1 ≪ b ≪ bc2,
inwhich case the dependence of ~vF onb becomes negligible.
Thus, in the regime in which the positive magnetoconduc-
tivity dominates the negative classical one, and is thus
observable, one may also expect a negligible linear mag-
netoconductivity in any type of Weyl metal.
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