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A novel mechanism of asymmetric frequency conversion is investigated in nonlinear dispersive
devices driven parametrically with a biharmonic pump. When the relative phase between the first and
second harmonics combined in a two-tone pump is appropriately tuned, nonreciprocal frequency
conversion, either upward or downward, can occur. Full directionality and efficiency of the conversion
process is possible, provided that the distribution of pump power over the harmonics is set correctly. While
this asymmetric conversion effect is generic, we describe its practical realization in a model system
consisting of a current-biased, resistively shunted Josephson junction. Here, the multiharmonic Josephson
oscillations, generated internally from the static current bias, provide the pump drive.
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Directed transport in nonlinear systems driven by a
signal that breaks time-reversal symmetry has received
much attention in the last decade [1–5]. This class of
systems is closely connected to that of driven systems in
which a degree of freedom moves in a potential lacking
space inversion symmetry [6]. These various subjects
address what is popularly known as the “ratchet effect”
[7]. Here, we focus our attention on a particular type of
transport, namely, frequency conversion of a signal with the
carrier being translated in frequency space either upward
(up-conversion process) or downward (down-conversion
process). While familiar devices with a purely dispersive
nonlinearity, such as 3-wave or 4-wave mixers, can readily
perform frequency conversion, reciprocity is maintained
between up- and down-converted photon amplitudes with
the two directions being distinguished solely by a relative
phase determined by the pump tone [8].
In this Letter, we demonstrate that when the drive contains

both the first and second harmonics, either up- or down-
conversion can be selected provided the relative phase and
amplitude of the tones are set appropriately. Moreover, since
this asymmetric conversion process can operate without
dissipation in a dispersive nonlinear element such as a
superconducting Josephson junction, it can be extended to
the quantum regime where signals consist of coherently
superposed photon states. Furthermore, a detailed under-
standing of the conditions under which asymmetric con-
version can take place will be useful in the design of
quantum information processing protocols in mesoscopic
devices. As an example, we show that asymmetric frequency
conversion takes place in the current-biased, resistively
shunted Josephson junction (RSJ).
To begin with a general discussion, we consider a generic

nonlinear system consisting of two parametrically coupled
oscillators A and B. We model the parametric coupling as a

time-varying mutual inductance MðtÞ, as shown in
Fig. 1(a). Varying this coupling at the pump frequency
ωp at the difference or sum of the two coupled modes
results in three-wave mixing, leading to either frequency
conversion or amplification, respectively [9]. In microwave
circuits such a coupling scheme may be implemented
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FIG. 1 (color online). Asymmetric parametric frequency con-
verter. (a) Minimal model based on a time-varying mutual
inductance MðtÞ with frequencies ωp and 2ωp. (b) Frequency
landscape showing various frequency mixing processes between
the modulation frequency ωm and the sidebands at ω�; solid and
dashed arrows indicate the amplitudes of different modes and
their conjugates, respectively. The modulation frequency ωm is
chosen to coincide with the center resonance ωA of the low
frequency oscillator, and the pump tone ωp is chosen to coincide
with the center resonance ωB of the high frequency oscillator.
The colors of the mixing arrows indicate the colors of the relevant
pump frequencies mediating the process, as shown on the
separate pump axis. The black arrows indicate reflections.
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by employing the nonlinear Josephson inductance,
LJðIÞ ¼ LJð0Þ½1 − ðI=I0Þ2�−1=2. When the current IðtÞ ¼
irf cosðωptÞ flowing through the junction is much smaller
than the critical current I0, the junction behaves as an
effective time-varying inductance LJðtÞ ≈ LJð0ÞIðtÞ=I0
modulated at the pump frequency by the rf current IðtÞ.
In Fig. 1(b), we show a more generic configuration [10]
where the pump frequency ωp is aligned with the oscillator
resonance ωB, fulfilling the conversion condition
(ωP ¼ ωþ − ωA) with respect to the upper sideband at
ωþ and the amplification condition (ωP ¼ ω− þ ωA) with
respect to the lower sideband at ω−.
A convenient formalism to capture the dynamics of such

parametric systems is provided by input-output theory [11].
In this paradigm, a three-wave mixer is fully described by a
scattering matrix that gives the relationship between each
incoming and outgoing mode of the system,
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where different frequency components participating in the
mixing process, ωm and ω� ¼ ωp � ωm, are selected by
harmonic balance. The a and b denote incoming and
outgoing wave amplitudes for spatial channels A and B,
normalized in terms of single photon energies, such that
hain;out½ω�ain;out½ω0�i ¼ Sain;outain;out ½ðω − ω0Þ=2�δðω þ ω0Þ
where Sain;outain;out ½ω� represents the number of photons per
unit time per unit bandwidth around frequency ω. Negative
frequency amplitudes denote conjugation along with
conversion; for real signals a½−ω� ¼ a†½ω�. Here tu; su
describe up-conversion from the modulation frequency ωm
to sideband frequencies �ωp þ ωm while td; sd describe
the reverse process of down-conversion from sideband
frequencies to the modulation frequency. The diagonal
elements denoted by rm;þ;− are the respective reflection
coefficients, and the v�∓ coefficients denote the strength of
mixing within the sidebands. The frequency landscape in
Fig. 1(b) depicts these processes pictorially. All the three-
wave mixing processes considered here are assumed to be
phase matched since the mixing process is spatially local in
the lumped element geometry shown in Fig. 1. Hence, the
phases of the signals are entirely determined by the phase
of the corresponding pump mediating the mixing process.
In addition, the oscillation amplitudes at signal and side-
band frequencies are considered to be weak enough to be
in the linear input-output regime, where instabilities and
nonlinearities due to pump depletion [8,12] can be safely
ignored.
We now consider two distinct pumping schemes.
Case I:—MðtÞ ¼ M1 cosðωptÞ. This corresponds to the

usual case of parametric pumping with a monochromatic
tone. Following an analysis similar to that in [10], we
obtain

td ¼ tu ¼ 2iξ1; ð2aÞ

sd ¼ s�u ¼ 2iξ1; ð2bÞ

vþ− ¼ 2ξ21; v−þ ¼ −2ξ21; ð2cÞ

where ξ1 ¼ ðM1=
ffiffiffiffiffiffiffiffiffiffiffi
LALB

p Þ is the equivalent dimensionless
pump strength [13]. Thus, we recover the usual case of
symmetric (or reciprocal) frequency conversion with
scattering between any pair of signals of equal magnitude,
i.e. jtdj ¼ jtuj; jsdj ¼ jsuj. We note, however, that the
phases associated with the off-diagonal scattering elements
are not equal. For mathematical simplicity, we work under
the rotating wave approximation (RWA) and assume that
both oscillators A and B are driven near resonance, i.e.
ωm ¼ ωA and δ� ¼ ðω� − ωBÞ=ΓB ≪ 1 [ΓB ¼ RB=ð2LBÞ
is the line width of the high frequency oscillator].
Case II:—MðtÞ ¼ M1 cosðωptÞ þM2 cosð2ωptþ αÞ. In

the case of biharmonic driving, additional three-wave
mixing of sidebands by the 2ωp harmonic modifies the
scattering amplitudes to (assuming δ� ¼ 0)

td ¼ 2iξ1Dð1þ ie−iαξ2Þ; tu ¼ 2iξ1Dð1þ ieiαξ2Þ;
ð3aÞ

sd ¼ 2iξ1Dð1 − ieiαξ2Þ; su ¼ −2iξ1Dð1 − ie−iαξ2Þ;
ð3bÞ

vþ− ¼ 2Dðξ21 þ ieiαξ2Þ; v−þ ¼ −2Dðξ21 þ ie−iαξ2Þ;
ð3cÞ

where ξ2 ¼ ðM2=
ffiffiffiffiffiffiffiffiffiffiffi
LALB

p Þ and D ¼ ½2iξ21ξ2 cos α þ
ð1 − ξ22Þ�−1. Equation (3) shows that the usual symmetry
of frequency conversion is now broken, since jtdj ≠ jtuj and
jsdj ≠ jsuj. Moreover, the preferred conversion channel is
guided by α, the phase shift between the harmonic
components of the drive. Maximum asymmetry between
off-diagonal scattering coefficients is obtained for
α ¼ �π=2, with þπ=2 yielding down-conversion and
−π=2 yielding up-conversion (Fig. 2). For zero phase
difference between the two harmonics, α ¼ 0ðmod2nπÞ,
we recover symmetric scattering, although with modified
coefficients because of additional 3-wave mixing by the
2ωp pump. The physical mechanism underlying this
asymmetry is rooted in the interference of different con-
version paths in frequency space between a given pair
of modes. As shown in Fig. 2(c), the phases of different
scattering coefficients are governed by the phases of
respective harmonics mediating the process. The introduc-
tion of three-wave mixing processes between the sidebands
ω� closes the interference loop; the phase sensitive nature
of up- and down-conversion coefficients (t; s), obtained
with the single-frequency pump in case I, is translated
through these processes into an asymmetry between off-
diagonal scattering amplitudes.
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Biharmonically pumped parametric systems form an
intriguing platform for exploring qualitatively new physics,
the asymmetric frequency conversion discussed here
being one such example. Steady state properties near the
critical bifurcation threshold in such systems have also
been studied in detail previously [14], with photon statistics
displaying bunching or antibunching depending on the
relative phase between the two pump drives [15].
Furthermore, in conjunction with the recently proposed
ideas of reservoir engineering [16], such parametric con-
version protocols can be shown to implement quantum-
limited directional amplification [17,18].
As an example of a multiharmonic-pump mediated

frequency conversion, we now consider in detail the
scattering of a microwave signal by an RSJ current biased
in its voltage state. The RSJ has been studied extensively
both theoretically [19,20] and experimentally [21,22]. The
phenomenon of directed transport in a single-junction
functioning as fluxon ratchets has also received attention
[23,24], though these studies have focussed on the static
current-voltage characteristics. On the other hand, studies
of mixer properties of the RSJ have remained restricted to
considering Josephson oscillations as the carrier or local
oscillator [25]. Detailed studies of higher Josephson har-
monics in the RSJ have remained elusive, to the best of our

knowledge, and the emergence of dynamical nonreciproc-
ity under their influence has remained hitherto unexplored.
Here, we present a generalized input-output formalism
that enables a self-consistent analytical evaluation of
amplitudes and phases of Josephson harmonics, generated
internally by the ac Josephson effect, to any order.
We begin with the well-known nonlinear equation of

motion for a Josephson junctionbiasedwith a static current IB,

φ0

R
_φþ I0

∂
∂φ

�
U
EJ

�
¼ 0; ð4Þ

representing a particle moving in the washboard potential
UðφÞ ¼ EJð1 − cosφ − φIB=I0Þ. Here, φ denotes the phase
difference across the junction, EJ ¼ φ0I0 is the Josephson
energy, I0 the critical current, φ0 ¼ ℏ=ð2eÞ the reduced
flux quantum and R the shunt resistance. The presence of
the cosφ term in UðφÞ causes the dynamics to be highly
nonlinear, generating multiple Josephson harmonics for
IB > I0. These harmonics play a role analogous to that of
the multiharmonic pump discussed earlier. To describe the
mixing properties of the RSJ, we perform a perturbative
analysis by expressing the phase as φ ¼ ωJtþ δφðtÞ and
expanding the cosφ term in a series in δφ about ωJt, where
ωJ ¼ h _φi is the Josephson frequency.
This treatment allows us to write

δφðtÞ ¼
XK
k¼1

pI
k cosðkωJtÞ þ pQ

k sinðkωJtÞ ð5Þ

in terms of the harmonic components associated with the
junction dynamics. Here, (pI

k; p
Q
k ) denotes the amplitudes of

the two quadratures associated with the kth harmonic of ωJ.
Following the analysis scheme introduced earlier [26], we
evaluatepI;Q

k for different k values as a truncated power series
in the dimensionless inverse bias parameter x ¼ I0=IB, with
the number of Josephson harmonics K included in the
calculation set by the order of expansion of cosφ. A self-
consistentcalculationof the static I − V characteristics,which
are related to the amplitudes of the Josephson oscillation
and its harmonics, is presented in Fig. 4(a).
The calculated amplitude of the Josephson oscillation

using this method to first order [corresponding to K ¼ 1 in
Eq. (5)] is [27]

pI
1 ¼ x; pQ

1 ¼ 0:

Similarly, including the next order in the perturbation series
[corresponding to K ¼ 2 in Eq. (5)] yields the following
expressions for the amplitudes of the first and second
Josephson harmonics in terms of the bias parameter x:

pI
1 ¼ xþ x3

4
; pQ

1 ¼ 0; ð6aÞ

pI
2 ¼ 0; pQ

2 ¼ −
x2

4
: ð6bÞ
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FIG. 2 (color online). Asymmetric frequency conversion.
(a) Asymmetry between frequency conversion amplitudes jtdj2 −
jtuj2 [Eq. (3)] plotted as a function of the strength of the second
harmonic (ξ2) of the pump and phase frustration α between the
harmonics. Maximum asymmetry is realized for maximal frus-
tration α ¼ π=2� nπ, with down-conversion occurring when the
second harmonic leads the first harmonic (α ¼ þπ=2þ 2nπ) and
up-conversion occurring when the second harmonic lags behind
the first harmonic (α ¼ −π=2þ 2nπ). (b) Maximal asymmetry
plotted as a function of modulation frequency parametrized as
dimensionless detuning δ� ¼ ωm=ΓB. (c) Interference of differ-
ent scattering amplitudes showing the realization of asymmetry as
in (a). Solid lines indicate the usual frequency conversion in the
presence of a single monochromatic pump at frequency ωp while
the dashed arrows indicate additional processes mediated by its
second harmonic 2ωp.
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Extending the analysis to higher orders, we find the
entire series of Josephson harmonics generated by a
junction in its voltage state to be

δφðtÞ ¼
X∞
k¼1

pI
2k−1 cos½ð2k − 1ÞωJt� þ pQ

2k sin½ð2kÞωJt�:

Such a series, with the phases of alternate even and odd
harmonics shifted by π=2, is frequently encountered in
nonlinear systems, for example driven ratchets, leading to
directed spatial transport [7]. A similar drive configuration
has also been explored to study directed diffusion in
spatially periodic potentials, implemented by the tuning
of activation energies with phase between the two har-
monics [30]. In the particular case considered here, it
corresponds to the phase across the junction evolving in a
time-asymmetric sawtooth fashion.
As discussed for a general parametric system in the

previous section, we can now study the nonlinear mixing
properties of the RSJ under such time-asymmetric phase
evolution. This is accomplished by treating the shunt
resistor as a semi-infinite transmission line that serves as
a channel for incoming and outgoing waves at the modu-
lation frequency ωm and sideband frequencies ω� ¼
�nωJ þ ωm of interest [31]. We model the junction
response to such input drives by including a perturbative
radiofrequency (rf) component of the form δφSðtÞ ¼PþN

n¼−N sI cos½ðnωJ þ ωmÞt� þ sQ sin½ðnωJ þ ωmÞt� in
Eq. (5) and performing a harmonic balance analysis at
ωm and ω�. The combination of the Josephson harmonics
evaluated earlier plays the role of an effective multihar-
monic pump. Figure 4(b) is a plot of the relative conversion

asymmetry, obtained as a difference between the net down-
and up-converted amplitudes normalized to the total con-
verted power. This asymmetry ratio is calculated by
restricting the perturbative analysis to the second harmonic
(K ¼ 2) and the first pair of sidebands (N ¼ 1) generated
about the Josephson frequency [in accordance with the
frequency landscape shown in Fig. 1(b)]. The figure shows
that the scattering becomes nonreciprocal, with the coef-
ficients describing down-conversion stronger than those
describing up-conversion. This result is in agreement with
that obtained for a general parametric mixing scheme in
view of the pump configuration described by Eq. (6).
Since α ¼ þπ=2, the second Josephson harmonic leads the
first harmonic and, as described previously, such a pump
configuration leads to down-conversion (see Fig. 2). We
note that the maximum asymmetry ratio obtained for
the RSJ is around 0.3; this is because this ratio depends
crucially on the strength of the 2ωJ harmonic (Fig. 3),
which in the case of RSJ is generated by a higher order
process and is consequently weaker than the ωJ pump
[Eq. (6)]. These results are corroborated qualitatively by
those obtained through a direct numerical integration of
Eq. (4) [27]. It may be possible to employ filters across
the junction to modify the junction reactance near the
Josephson frequency and its harmonics, and achieve a more
favorable proportion of higher Josephson harmonics con-
ducive to higher conversion asymmetry.
In conclusion, we have uncovered a generic mechanism

that breaks the symmetry of frequency conversion in
parametric processes. Unlike the symmetric conversion
schemes employing a single frequency pump, it relies on a
multiharmonic pump with appropriate relative phases and
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ξ1. The maximum ratio of unity, corresponding to 100%
asymmetry, is achievable for optimal strengths of 2ωp pump
and sufficiently small detunings from the carrier (ωm ≪ ωp).
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FIG. 4 (color online). Analytical calculation for the RSJ.
(a) Static I − V characteristics of the RSJ calculated using the
perturbative series method, showing the variation of voltage V
across the junction with current IJ flowing through it. The solid
black line corresponds to the exact analytical result
V ¼ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2B − I20

p
, while the green (dotted), blue (dashed), and

violet (dotted-dashed) curves correspond to the series calculation
with one ½K ¼ 1�, two ½K ¼ 2�, and three ½K ¼ 3� Josephson
harmonics, respectively. (b) Asymmetry ratio (cf. Fig. 3) for the
RSJ, calculated with the pump configuration derived in Eq. (6).
This ratio is almost independent of the modulation frequency
(parametrized here as a dimensionless variable Ωm ¼ ωm=ωB
with ωB ¼ IBR=φ0) for small Ωm, and increases as the junction is
biased towards the strongly nonlinear regime by increasing x (or
decreasing IB) [27].
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amplitudes of successive harmonics that select frequency
up-conversion over down-conversion, or vice versa, with
100% efficiency. We have shown that the asymmetry in
frequency conversion takes place in a current-biased RSJ.
The internally generated series of Josephson harmonics has
odd and even harmonics phase shifted by π=2, resulting in a
pump configuration optimally tuned for down-conversion.
The asymmetric frequency conversion protocol in the RSJ
also provides important clues for unravelling the operation
of the dc SQUID (superconducting quantum interference
device) [20] as a directional, quantum-limited, microwave
amplifier [18,26]. The SQUID may be modeled as a two-
variable RSJ circuit with a static phase difference between
the two junctions imposed by the external flux bias of the
loop [26].
Given its generic platform-independent nature, our

analysis opens itself to various applications. In addition
to being in situ tunable with pump phases, the parametri-
cally guided frequency conversion can easily be extended
to a multiphoton regime without being limited by saturation
effects such as those encountered in down-conversion
schemes based on three-level Λ systems [32]. Selective
down-conversion can also be used to enhance the gener-
ation efficiency of nonclassical states such as entangled
photons [33]. Furthermore, the protocol of efficient up-
conversion with gain may complement recent proposals
[34] for long distance transmission of quantum information
using low loss optical technology.
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