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We study multiphoton resonances in a strongly driven three-level quantum system, where one level is
periodically swept through a pair of levels with constant energy separation E. Near the multiphoton
resonance condition nℏω ¼ E, where n is an integer, we find qualitatively different behavior for n even or
odd. We explain this phenomenon in terms of families of interfering trajectories of the multilevel system.
Remarkably, the behavior is insensitive to fluctuations of the energy of the driven level, and survives deep
into the strong dephasing regime. The setup can be relevant for a variety of solid state and atomic or
molecular systems. In particular, it provides a clear mechanism to explain recent puzzling experimental
observations in strongly driven double quantum dots.
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The advent of intense microwave and laser sources
has opened a range of new possibilities for investigating
the strong-driving regime of both natural and artificial
(solid-state) atoms and molecules [1–3]. In this regime, the
amplitude of an applied ac driving field may greatly exceed
both the driving field photon energy ℏω as well as the
separation between energy levels of the system. While the
dynamics of strongly driven two-level systems have been
studied extensively [3–8], multilevel systems offer new
avenues to explore. In particular, high-order multilevel and
multiphoton processes [9,10] give rise to intriguing and
potentially useful phenomena such as amplitude spectros-
copy [11], population inversion [12–14], and microwave-
induced cooling [15].
Recently, a new type of multiphoton resonance was

discovered in experiments on spin-blockaded double quan-
tum dots (DQDs) subjected to large-amplitude modulations
of a nearby gate electrode [16,17]. The resonances show a
striking asymmetry, with current enhanced when the
electron Zeeman splitting matches an odd-integer multiple
of the driving field photon energy, EZ ¼ ð2nþ 1Þℏω, and
suppressed for even-integer resonances EZ ¼ 2nℏω. Such
a dramatic even or odd effect, which is, furthermore,
insensitive to changes in driving amplitude and dc offset
over a wide range of values, is unknown in two-level
systems, cf. [18]. Analytical [19,20] and numerical [21,22]
investigations have accounted for the existence of multi-
photon resonances, but crucially could not explain the even
or odd asymmetry observed in [16,17] (though a Fano-like
origin was speculated [19]).
Motivated by this puzzle, we look at the dynamics of a

strongly driven multilevel system. Previously, such systems
have been investigated in a variety of contexts. For
example, driven transport through nanoscale conductors
has been studied using Floquet theory [23,24]. The dynam-
ics of superconducting qubits have been investigated via

numerical simulations [12], or by viewing the dynamics in
terms of isolated two-level crossings, omitting possible
long-lived coherences [25]. Interferences between multi-
level processes have also been studied, e.g., in ladder-type
systems where multiphoton transitions can proceed directly
or through a resonant intermediate state [26].
In this Letter, we focus on a three-level system and show

that multilevel interferences between first and third order
processes lead to multiphoton resonances with character-
istics differing markedly from those of familiar two-level
resonances. While the resonances require long-lived coher-
ence between two of the levels, the phenomenon survives
deep into the regime of strong dephasing of the third level.
In this regime we derive analytic expressions for all
interlevel transition rates. Finally, we explicitly connect
our model to the experiments of Refs. [16,17] and show
that it captures all relevant features of the data. The
phenomena that we describe are, however, quite general,
with potential relevance, e.g., for strongly driven spin
qubits, superconducting qubits, and diamond NV centers.
To highlight the key qualitative differences between two-

level and multilevel resonances, we first briefly review the
phenomenology of multiphoton resonances in a two-level
system. We consider a system with basis states fj1i; jSig,
its dynamics governed by the Hamiltonian

H2ðtÞ ¼
�
0 q
q −εðtÞ

�
; εðtÞ ¼ ε0 − A cosωt: ð1Þ

Here we focus on the case of strong driving, A ≫ q and
A > jε0j. Figures 1(a) and 1(b) show the instantaneous
spectrum of this system, plotted versus detuning ε and
time t.
The relevant features of the driven system’s dynamics can

be understood heuristically in terms of families of interfer-
ing trajectories [Fig. 1(b)]. For strong driving, transitions
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take place at relatively well-defined points in time ftpg
when the two levels are nearly degenerate. Two paths taking
the system from state j1i to jSi are indicated by the dashed
and solid red lines. In the illustration, the transitions occur at
times t2 and t4 ¼ t2 þ T, where T ¼ 2π=ω is the driving
period, and the interference phase corresponds to the
difference of shaded areas shown, Φ ¼ jΦ1j − jΦ2j.
When ε0 ¼ nω (we set ℏ ¼ 1), we have Φ ¼ 2nπ, and
for integer n the interference is constructive. In this case all
paths featuring transitions at “even” times t2p mutually
interfere constructively, as do all paths with transitions at
odd times t2pþ1. This provides a resonant response.
Additional structure results from interferences between
these two groups of trajectories, which are sensitive to
the individual phases Φ1;2. For sinusoidal driving, this leads
to the strength of the n-photon resonance line being
modulated by the Bessel function JnðA=ωÞ [5]. The
intensities of the two-level multiphoton resonances are thus
highly sensitive to the amplitude and frequency of driving,
exhibiting sequences of peaks and nodes as A=ω is varied.
We now turn our attention to strong driving in a

multilevel system. To clearly demonstrate the essential
physics of multilevel resonances, we focus on the case
of three levels. For simplicity, we assume that the driving
field couples strongly to only one level, jSi, while the
energy separation between the other levels j1i and j2i is
unaffected [see Figs. 1(c) and 1(d)]. The state jSi acts as a
“shuttle,” mediating population transfer between j1i and
j2i. This situation is described by the generic Hamiltonian

H3ðtÞ ¼

0
B@

E=2 0 q2
0 −E=2 q1
q2 q1 −εðtÞ

1
CA; ð2Þ

written in the basis fj2i; j1i; jSig. Here, E is the energy
splitting between states j1i and j2i, q1;2 are the coupling
matrix elements, and εðtÞ ¼ ε0 − A cosωt as before.
Two-level resonances between jSi and j1i or j2i,

analogous to those described above, can occur whenever
the corresponding static detuning ε0 � E=2 matches the
n-photon energy nω. Such resonances do not present
qualitatively new physics.
More interestingly, we investigate the existence of

resonances associated with the energy splitting E. Such
resonances must occur via the strongly modulated level jSi,
thereby constituting a true multilevel phenomenon.
How could such resonances arise? In the spirit of the

discussion above, in Fig. 1(d) we illustrate a characteri-
stic pair of interfering trajectories, from j1i to jSi. For
large driving amplitude A ≫ ε0, E, the interference phase
is given by Φ1 þ Φ2 þ Φ3 ¼ Eðt4 − t1Þ ¼ 3EðT=2Þ.
Importantly, this phase is controlled only by the splitting
E and the driving half-period T=2 ¼ π=ω, and not by the
driving amplitude or waveform. Many such paths exist,
where the last two transitions take place approximately at
the same time tp>1. These paths interfere constructively
when Φ1 ¼ πE=ω ¼ 2πn, suggesting the existence of
resonances at E ¼ 2nω, i.e., at even multiples of ω.
Similar considerations for transitions from j1i to j2i reveal
a series of processes depending on the full driving period T,
predicting additional resonances at all multiples of the
photon energy, E ¼ nω. We thus expect to find resonances
with very different behavior when E is an even or an
odd multiple of ω. Further, in sharp distinction with the
two-level case discussed above, the interference phase Φ1

and thus the resonances are only weakly sensitive to the
amplitude A and detuning ε0.
We now begin our detailed analysis, which is based on a

perturbative treatment in terms of the small parameters
q21;2=ðAωÞ that characterize the strong driving limit. To
most clearly exhibit the effect, and to allow us to arrive at
analytic results, we focus on a regime of strong dephasing
where coherences between j1i and jSi and between j2i and
jSi are rapidly lost, on a time scale shorter than the driving
period. In contrast, we allow coherences between j1i and
j2i to be long-lived on this time scale. The dephasing is
modeled by Gaussian white-noise fluctuations on each of
the unperturbed energy levels via

δH3ðtÞ ¼
X
α

ξαðtÞjαihαj; α ∈ f1; 2; Sg; ð3Þ

with ξαðtÞξβðt0Þ ¼ Γαδðt − t0Þδαβ, where the overbar indi-
cates averaging over noise realizations. Within this model
we calculate the rates of interlevel transitions, working up
to fourth order in the couplings q1;2.
Strong dephasing is particularly relevant for the experi-

ments in Refs. [16,17], where the level corresponding to jSi
exhibits strong lifetime broadening due to coupling to a

(a) (b)

(c) (d)

FIG. 1 (color online). Spectrum of (a),(b) the two-level
Hamiltonian (1) and (c),(d) the three-level Hamiltonian (2). In
(a),(c) the energy levels are plotted as a function of detuning and
in (b),(d) as a function of time assuming strong driving (thin blue
lines). We have set A ≫ q; q1;2. In (b),(d) we show interfering
paths which bring the system from j1i to jSi (thick red lines).
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nearby reservoir (see discussion below). The multilevel
resonances survive deep into the strong-dephasing regime,
where the quasi-two-level resonances at ε0 � E=2 ¼ nω
are completely washed out.
The first analytical step is to transform to a modified

interaction picture via jψRðtÞi ¼ eiRðtÞjψðtÞi, with
RðtÞ ¼ P

αϕαðtÞjαihαj. The phases ϕα are given by
ϕαðtÞ ¼ −

R
t
0 dτ~εαðτÞ, with ~ε1;2ðτÞ ¼ ∓ 1

2
Eþ ξ1;2ðτÞ and

~εSðτÞ ¼ εðτÞ þ ξSðτÞ. States in this interaction picture
evolve according to iðd=dtÞjψRi ¼ ~H3ðtÞjψRi, with

~H3ðtÞ ¼ q1eiϕS1ðtÞjSih1j þ q2eiϕS2ðtÞjSih2j þ H:c:; ð4Þ

where ϕαβðtÞ≡ ϕαðtÞ − ϕβðtÞ.
The transition rate between states jαi and jβi is calcu-

lated as the time derivative of the transition probability,

Wα→β ¼
d
dt

jhβjUðtÞjαij2; ð5Þ

where UðtÞ evolves the system between times 0 and t. We
expand the time-evolution operator in powers of q1;2 as
UðtÞ ¼ 1þ Uð1ÞðtÞ þUð2ÞðtÞ þ…, with

UðmÞðtÞ ¼ ð−iÞm
Z

t

0

dt1 � � �
Z

tm−1

0

dtm ~H3ðt1Þ � � � ~H3ðtmÞ:

Working up to third order in q1;2 gives access to the
transition rates up to fourth order in the couplings.
For illustration, we now evaluate W1→S to lowest

(second) order; other rates are obtained similarly. We write

Wð2Þ
1→S ¼

d
dt

jhSjUð1ÞðtÞj1ij2

¼ q21
d
dt

Z
t

0

dt1

Z
t

0

dt2ei½ϕS1ðt1Þ−ϕS1ðt2Þ�; ð6Þ

and use ei
R

dτξðτÞ ¼ e−ð1=2Þ
R

dτ
R

dτ0ξðτÞξðτ0Þ. For white noise
the correlator in the exponent is ∝ δðτ − τ0Þ; Gaussian noise
with other spectral densities can be considered similarly.
The result is simplified for ΓS ≫ ω;Γ1;2, giving

Wð2Þ
1→S ¼

q21ΓS

ð1
2
E − ε0 þ A cosωtÞ2 þ 1

4
Γ2
S

: ð7Þ

Moving to the strong driving limit A ≫ ΓS and assuming
A > jε0 − 1

2
Ej, the transition rate displays sharp bursts, well

separated in time, occurring whenever the levels cross, i.e.,
when A cosωt ≈ ε0 − 1

2
E. Averaging these bursts over one

period yields Wð2Þ
1→S ≈ 2q21=½A2 − ð1

2
E − ε0Þ2�1=2. Similarly,

we find Wð2Þ
2→S ≈ 2q22=½A2 − ð1

2
Eþ ε0Þ2�1=2 in the same

limit, and identical rates for the reverse processes Wð2Þ
S→1

and Wð2Þ
S→2.

Multilevel interference resonances first arise at fourth

order, Wð4Þ
α→β ¼ ðd=dtÞf2RehαjU†ð3ÞðtÞjβihβjUð1ÞðtÞjαi þ

jhβjUð2ÞðtÞjαij2g. Because of the form of ~H3, the rates

Wð4Þ
1;2↔S only involve the first term, while the rates Wð4Þ

1↔2

involve only the last. Proceeding along similar lines as
above, we assume ΓS ≫ ω;Γ1;2 and work in the strong-
driving limit A ≫ ΓS. Note that in our regime of interest,
n≳ 1, this also ensures that ΓS ≪ Aω=E.
We now can perform two of the three time integrals in the

rates, yielding

Wð4Þ
1;2↔S ¼

Z
t

0

dτ
2q21q

2
2ΓSe−ðΓ

0ω=2πÞðt−τÞ

ð1
2
E − ε0 þ A cosωtÞ2 þ 1

4
Γ2
S

× Im

�
e−iEðt−τÞ

1
2
E − ε0 þ A cosωτ þ i

2
ΓS

�
; ð8Þ

with the dimensionless dephasing rate Γ0 ¼ ðΓ1 þ Γ2Þπ=ω,
and a similar expression for Wð4Þ

1↔2. We can find analytic
approximations for the integrals in two important cases,
valid for times t ≫ Γ−1

1;2. First, at zero detuning, ε0 ¼ 0,

we find Wð4Þ
1;2↔S ≈ −g0W̄ and Wð4Þ

1↔2 ≈ ð1
2
g0 þ h0ÞW̄, with

W̄ ¼ 2πq21q
2
2=ðA2ωÞ and

g0 ¼
2 cosðnπÞ sinhð1

2
Γ0Þ þ eΓ

0 − cos 2nπ

coshΓ0 − cos 2nπ
;

h0 ¼
sin2ð1

2
nπÞ sinhðΓ0Þ

coshΓ0 − cos 2nπ
;

using the (continuum-valued) photon number n ¼ E=ω.
Second, for arbitrary detuning but integer n, we find

Wð4Þ
1;2↔S ≈ −giW̄ and Wð4Þ

1↔2 ≈ ð1
2
gi þ hiÞW̄, with

gi ¼
cosðnd−Þ½sinhðΓ

0d−
2π Þ þ sinhðΓ0dþ

2π Þ� þ eΓ
0 − 1

ðcoshΓ0 − 1Þð1 − δ2Þ ;

hi ¼
sin2ð1

2
ndþÞ cothð12Γ0Þ
1 − δ2

;

where d� ¼ π � 2 sin−1 δ and δ ¼ ε0=A.
In Fig. 2 we plot the rates as a function of n for δ ¼ 0

(a),(c) and as a function of δ for n ¼ 1; 2; 3 (b),(d), in all
plots setting Γ0=π ¼ 0.3. The rates display resonant fea-
tures at integer n. Moreover, the resonances for even and
odd n are qualitatively different, as anticipated above. The

negative sign of Wð4Þ
1→S indicates that this fourth-order

contribution provides a suppression of the large (second-

order) background transition rate Wð2Þ
1→S. As long as Γ1 þ

Γ2 > Wð2Þ
1→S the total rate Wð2Þ

1→S þWð4Þ
1→S is positive. For

Wð2Þ
1→S > Γ1 þ Γ2, lifetime broadening of j1i and j2i due to

driving-induced transitions to jSi becomes dominant. To
capture this effect, higher terms must be included.

PRL 113, 247002 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

12 DECEMBER 2014

247002-3



So far, our results are general for strongly driven three-
level systems. The different behavior at even and odd n is
predicted to be a generic feature of resonances at E ¼ nω;
to arrive at analytic results we added the assumption of
strong fluctuations of the driven level. We now connect
our results to the experiments of Refs. [16,17], in which
current through spin-blockaded DQDs was measured in the
presence of strong ac driving.
In the two-electron regime, the low-energy electronic

subspace of the DQD is spanned by five states: a “(1,1)”
spin singlet and a spin triplet with a single electron in each
dot, and a “(0,2)” spin singlet with double occupancy of
the right dot (the left dot being empty). In spin blockade,
current flow is mediated by the (0,2) singlet state, which
is the only state with direct coupling to the drain lead.
Coupling between the blocked spin triplet and the singlet
levels occurs via spin-orbit, hyperfine, and/or inhomo-
geneous Zeeman coupling. Away from singlet-triplet
degeneracy points, ac driving can provide the energy
necessary to stimulate triplet-singlet transitions [27,28].
When the driving frequency and level splittings are in
resonance, such coupling is expected to lift the blockade
and produce an enhancement of current. The striking even
or odd effect observed in Refs. [16,17] thus clearly does not
fit in this simple picture.
As we will now show, the multilevel multiphoton

resonances described above account for all of the main
features of the experimental data. To make the connection
explicit, state jSi in our model represents the (0,2) singlet
state of the DQD, while j1i represents the triplet state Tþ,
with both electron spins pointing up, and j2i represents a
particular superposition of the (1,1) singlet and T0 states,
which is determined by Zeeman energy inhomogeneities in
the DQD [29].
Using all contributions to the transition rates up to

fourth order, we construct a master equation for the
time-dependent level occupation probabilities fpαg,

_p1 ¼ p2

�
W2→1 þ

1

2
W2→S

�
− p1

�
1

2
W1→S þW1→2

�
;

ð9Þ
where p2 ¼ 1 − p1. To eliminate pS, we assumed that the
decay of jSi and the consecutive reloading of j1i or j2i
(with equal probabilities) happens instantaneously on the
time scale of the dynamics of p1;2. We solve Eq. (9) for

the steady-state values pðeqÞ
1;2 , which give the steady-state

current I=e ¼ pðeqÞ
1 W1→S þ pðeqÞ

2 W2→S.
To compare with the data in Fig. 2(d) of Ref. [17], we set

δ ¼ 0 and assume that ω; E ∼ 1–10 μeV. We set q21=A ¼
0.05 μeV and q22=A ¼ 0.5 μeV, i.e., q22=q

2
1 ¼ 10 [30], and

choose Γ1;2 ¼ 1 μeV. In Fig. 3(a) we plot the resulting
steady-state current, normalized to Ibg, the off-resonant
“background” current (i.e., the current due to “direct”

second-order transitions Wð2Þ
1;2→S associated with repeated

sweeps through the S-Tþ level crossing; in the experiment
Ibg ∼ 15 pA). The model reproduces all important features
of the data: a resonant response of current along all
n-photon lines, alternating between enhancement for odd
n and suppression for even n [31]. At even n, the negative

contributions Wð4Þ
1;2→S suppress escape from j1i and j2i to

jSi, resulting in a reduction of current relative to the

background. The rate Wð4Þ
1↔2 is largest for odd n, where

it efficiently mixes j1i and j2i and thus enhances the escape
rate out of the most strongly blocked state, j1i, thereby
increasing the total current. Including a second unpolarized
(1,1) level [29], split from j1i by E0, would yield another
fan of current peaks and dips at E0 ¼ nω, reproducing the
“doubled” fan of Fig. 2(d) of Ref. [17].
We finally investigate the detuning dependence of the

current, which in the experiment showed a strikingly slow

(a) (b)

(c) (d)

FIG. 2 (color online). The rate Wð4Þ
1→S at (a) zero detuning as a

function of n ¼ E=ω, and (b) for integer n ¼ 1; 2; 3 as a function

of δ. (c),(d) The same for the rate Wð4Þ
1→2. In all plots we used

Γ0=π ¼ 0.3. In (d) the curves are offset in steps of 3
2
.

(a)

(b)

FIG. 3 (color online). Calculated current through a driven
double quantum dot in spin blockade, normalized to the back-
ground current Ibg. (a) The current at δ ¼ 0 as a function of ω and
E. (b) Slow modulation of the resonances: the current as a
function of δ for fixed n ¼ 1; 2; 3. In all plots we used
q21=A ¼ 0.05 μeV, q22=A ¼ 0.5 μeV, and Γ1;2 ¼ 1 μeV.
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modulation (on the scale of ε0 ∼ A) with distinct charac-
teristic shapes for each of the resonances, see Fig. 3(b)
of [17]. In Fig. 3(b) we plot the current as a function
of δ at fixed n ¼ 1; 2; 3, using the same parameters as
for Fig. 3(a). The detuning dependence of I agrees well
with the experimental observations. Here it arises from the
weak dependence of the interference phases Φn on ε0, as
explained above.
To summarize, we investigated multiphoton resonances

in a strongly driven three-level quantum system. We
identified new resonant responses which crucially depend
on the multilevel structure of the system. We further
revealed how these resonances provide a mechanism to
explain recent puzzling experimental observations in
strongly driven double quantum dots. Interestingly, the
behavior survives deep into the regime of strong dephasing
on one of the levels. Detailed explorations of the fully
coherent regime, the role of decoherence, and connections
to other physical systems are interesting directions for
further study.
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