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The recent observation of ultralow resistivity in highly doped, atomic-scale silicon wires has sparked
interest in what limits conduction in these quasi-1D systems. Here we present electron transport
measurements of gated Si∶P wires of widths 4.6 and 1.5 nm. At 4.6 nm we find an electron mobility,
μel ≃ 60 cm2=V s, in excellent agreement with that of macroscopic Hall bars. Metallic conduction persists
to millikelvin temperatures where we observe Gaussian conductance fluctuations of order δG ∼ e2=h. In
thinner wires (1.5 nm), metallic conduction breaks down at G≲ e2=h, where localization of carriers leads
to Coulomb blockade. Metallic behavior is explained by the large carrier densities in Si∶P δ-doped systems,
allowing the occupation of all six valleys of the silicon conduction band, enhancing the number of 1D
channels and hence the localization length.
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Individual dopants in semiconductors are emerging
as active components in device applications due to their
electrical [1–3], spintronic [4,5], or optoelectronic [6]
properties. Combined with the ability to encode quantum
information [5] within their spin or charge degrees of
freedom, individual dopants can be regarded as the funda-
mental limit in semiconductor device scaling. However, the
construction of complex devices [7–9] and scalable archi-
tectures [10,11] requires low-resistive electrodes and inter-
connects of comparable scale as the dopants themselves.
Recently, we reported the fabrication of atomic-scale

wires in silicon, using STM hydrogen lithography, phos-
phorus δ doping, and low-temperature molecular beam
epitaxy [1]. In contrast to other silicon nanowires [12] these
highly doped systems were found to maintain a diameter-
independent bulklike resistivity as low as ρ3D ¼ ð0.3�
0.2Þ mΩ cm at T ¼ 4.2 K. These results implied Ohmic
scaling down to diameters comparable to the donor Bohr
radius (aB ∼ 2.5 nm), raising the question whether these
wires could be regarded as metallic.
Indeed, atomistic tight-binding (TB) calculations con-

firm a metallic band structure with Fermi energies as much
as EF ≃ 135 meV above the local conduction band edge
[1,13]. These calculations, however, assume “ideal” wires
with periodic repetitions of doped supercells and do not
capture potential disorder in the wire arising from the
disordered placement of donors. Understanding this dis-
order is crucial since it can lead to spatial localization of
electronic wave functions [14] and ultimately imposes a
limit on the observation of metallic conduction in low-
dimensional nanostructures.
In strictly one-dimensional (1D) systems (those with a

single quantum channel), disorder causes localization over

a length scale as short as the carrier mean free path, l [15].
With l≃ 5–10 nm Si∶P δ-doped systems [16], no appreci-
able length scale would exist over which metallic con-
duction and Ohm’s law could be maintained [17]. However,
the localization length, ξ ∼ Nl, in quasi-1D systems (those
with multiple quantum channels N), increases due to an
enhanced number of final states for scattering [18,19].
Correspondingly, it has been shown that a single
parameter—the conductance G—determines whether a
conductor of length L is regarded as metallic or insulating
with a universal crossover at a conductance G0 ∼ e2=h,
where ξ ∼ L [18,20].
Here, we investigate this metal-insulator transition in

highly doped Si∶Pwires. Using STMas an atomic-precision
fabrication tool to scale the wire width, we access both
metallic and insulating regimes and study electron conduc-
tion down to millikelvin temperatures and in the presence
of gate-induced electric fields. Unique to Si∶P wires,
extremely high carrier sheet densities (≃2 × 1014 cm−2)
allow the occupation of all six equivalent valleys of the
silicon conduction band, leading to a sixfold enhancement
of 1D channels at the quantum limit. Consequently, this
allows metallic conduction over tens of nanometers in
Si∶P wires, despite their atomic-scale diameters.
STM images of two wire templates (W1) and (W2) [21]

are shown in Fig. 1 [1,3,22] with high-resolution closeups
in Figs. 1(c) and 1(d) recorded after hydrogen lithography
on Sið001Þ − ð2 × 1Þ substrates (n-type, 1–10 mΩ cm).
Both wires are aligned along h110i, parallel to the dimer
rows of the surface reconstruction. Compared to earlier
work on STM-patterned wires [23,24], improved tip bias-
ing conditions (∼2.5 V, ∼25 nA) were used for complete
removal of the hydrogen resist and clean definition of the
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wire edges. We extract the lithographic widths, w ¼ 4.6
and w ¼ 1.5 nm, corresponding to approximately six and
two atomic dimer rows (DR) of the surface reconstruction.
The wires span lengths, L ¼ 47 and L ¼ 49 nm, between
the contacts, making them nominally identical except for
their width.
Immediately after STM lithography of the wires, each

template is exposed to phosphine (PH3) gas (5 × 10−8 mbar,
6 min), passivating the reactive silicon dangling bonds,
thereby effectively protecting the wire against contaminants
during patterning of electrodes (S, D, V1;2), gates (G1; 2),
and micrometer-scale contact arms [1]. The PH3-dosed
parts of the central part of the pattern can be observed in
Figs. 1(a) and 1(b). A second exposure to PH3, followed
by annealing (350 °C, 1 min) and low-temperature silicon
homoepitaxy (≃25 nm), selectively dopes the completed

pattern to 1=4 ML density (N2D ≃ 2 × 1014 cm−2) [16,25].
Optimized conditions during dopant incorporation and
crystal growth [25], compared to earlier studies [23,24],
minimize segregation and diffusion of donors and allows for
atomically sharp doping profiles with equivalent bulk
density

ffiffiffiffiffiffiffiffi
N2D

p
3 ∼ 1021 cm−3—three orders of magnitude

higher than the density (≃3 × 1018 cm−3) at the Mott
transition [15].
Four-terminal IV characteristics at T ¼ 4.2 K are shown

in Figs. 1(e) and 1(f). In the 4.6 nm wide wire (W1), linear
IVs and a weak dependence on gate voltage indicate
metallic conduction with the large carrier density effec-
tively screening the gate-induced electric fields. In contrast,
the 1.5 nm wide wire (W2) shows a strong dependence on
gate voltage, allowing us to tune the device from Ohmic
(linear) to non-Ohmic, and indicates incomplete screening
of the disorder potential and carrier localization. Integrity
of the doping pattern in both wires is confirmed by the
existence of a low-Ohmic transport channel along S −D
while several hundred millivolt can be applied to the gates.
In Figs. 2(a) and 2(b), we plot conductanceGW corrected

for series resistances Rδ arising within the contact triangles
at either end of the wires [26]. The lower panel in each
figure shows conductance at V4T ¼ 0V, with respect to
G0 ∼ e2=h (black dashed lines).
In the 4.6 nm wide wire (W1) the absence of conduct-

ance features resembles the characteristics of an Ohmic
resistor with GW > e2=h at all gate voltages. Metallic
conduction is confirmed by the approximately linear slope
allowing us to extract electron mobility, μel. In quasi-1D
systems the conductance can be expressed using
Boltzmann theory [27,28],

G ¼ gsgv
e2

h
kFl
2

�
w
L

�
¼ 2e2

h
Neff

πl
2L

; ð1Þ

where gs ¼ 2 and gv ¼ 6 are the spin and valley multi-
plicity, respectively, and kF ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4πns=gsgv
p

is the Fermi
wave vector. The last identity connects to a Landauer-type
expression of the conductance [27] where πl=2L can
be regarded as an average transmission coefficient per
1D mode and Neff ¼ gvðkFw=πÞ denotes the total number
of modes [29].
From a linear fit [dashed blue line in Fig. 2(a)],

G ¼ 4.8
e2

h

�
1þ VG

3 V

�
; ð2Þ

we extract,

μe ¼
�
L2

CG

��
dG
dVG

�
≃ 60 cm2=V s; ð3Þ

in excellent agreement with previous estimates in 2D
δ-doped Hall bars (35–120 cm2=Vs) [16,25]. In the above
estimate L is the sample length and CG ¼ eðdNel=dVGÞ≃
23 aF is the combined gate capacitance. The latter has been
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FIG. 1 (color online). (a) and (b) Overview STM images
(−2.0 V, 100 pA) of two atomic-scale wires (W1) and (W2)
with two contacts (S, V1) and (D, V2) on either end, allowing
four-terminal (4T) resistance measurements. In-plane gates, G1

and G2, allow us to tune the electron density. (c),(d) Atomic
resolution images show the alignment along h110i. The litho-
graphic widths, w ¼ 4.6 (W1) and w ¼ 1.5 nm (W2), correspond
to six and two dimer rows (DR) of the Sið001Þ − ð2 × 1Þ surface
reconstruction. (e),(f) 4T IV characteristics at T ¼ 4.2 K and for
varying gate bias, VG.
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obtained, assuming that the wire is fully depleted at
VG ¼ −3 V, allowing us to estimate the number of carriers
in the wire, Nel ≈ 430ð1þ ðVG=3 VÞÞ, based on the elec-
tron sheet density at VG ¼ 0 V (≃2 × 1014 cm−2) and the
lithographic area of the wire, ðw × LÞ ≈ 215 nm2. From
the mobility we extract the electron mean free path,
l ¼ ðℏkFμel=eÞ≃ 6 nm. This now allows us to extract the
Ioffe-Regel (disorder) parameter, kFl. With kFl ≫ 1 for
metallic systems and kFl ≪ 1 in insulators [17], we find
kFl≃ 9, in our Si∶P wires.
In the 1.5 nm wide wire (W2) [Fig. 2(b)] we observe

regions of reduced differential conductance around zero
bias and at negative gate voltage. These result in regular
oscillations in the linear conductance at GW < e2=h, and
arise from Coulomb blockade of strongly localized carriers
[20,30,31]. From the height of the Coulomb “diamonds”
(white dashed lines), we extract an approximate charging
energy, EC ≃ 2 meV. Towards positive gate bias, the
Coulomb oscillations subside, coinciding with an increase
in conductance just above GW ∼ e2=h.
To understand metallic conduction and its limits in Si∶P

wires, it is important to realize that they are multimode
quasi-1D systems such that the number of conducting
channels Neff and the carrier mean free path l determine the
length over which electronic wave functions are localized,
ξ ∼ Neffl [19]. Unique to Si∶P nanostructures are extremely
high carrier sheet densities (≃2 × 1014 cm−2), allowing
the occupation of all six equivalent valleys of the silicon
conduction band (gv ¼ 6) with effective masses close to
those in bulk [13,32–35]. Importantly, this distinguishes
Si∶P wires from other silicon devices with dilute or
semidilute doping (≲1019 cm−2) [36], in which tunneling
occurs through discrete donor states or within Hubbard
impurity bands [36].
The number of channels Neff obtained by atomistic

TB calculations [1,13] is plotted in Fig. 3(a) as a function

of width. Here, we observe an approximately linear drop in
Neff with decreasing width down to w≃ 2 nm, where Neff
saturates at the valley multiplicity, gv ¼ 6. A single 1D
mode in each valley, Neff ¼ 6, consequently defines the 1D
quantum limit for Si∶P wires. The black dashed line in
Fig. 3 corresponds to a simple analytical estimate,
Neff ¼ gvðkFw=πÞ, previously employed in the expression
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FIG. 2 (color online). 4T differential conductance GW of two atomic-scale wiresW1 (a) andW2 (b). Upper panel: GW as a function of
gate voltage VG, and 4T voltage drop,V4T . Lower panel: Conductance, GWðV4T ¼ 0VÞ with respect to G0 ∼ e2=h (black dashed lines).
The dashed blue line in (a) shows a linear fit to extract electron mobility. Coulomb blockade oscillations (b) are observed in the 1.5 nm
wide wire (W2).
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FIG. 3 (color online). Atomistic modeling of the electronic
structure at T ¼ 4.2 K. (a) Number of conducting modes Neff
(diamonds) as a function of wire width, compared to a simple
analytical estimate (black dashed line, see text). (b)–(d) Modeling
of electron localization due to dopant disorder. (b) Example
supercell configurations used to calculate (c) band structure and
density of states. (d) Charge density jψ j2dr [1] based on a
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of the Boltzmann conductance [Eq. (1)]. With as many as
Neff ¼ 13 (W1) and Neff ¼ 6 (W2) channels (black arrows)
based on the TB calculations, we estimate ξW1 ∼ 78 nm
and ξW2 ∼ 36 nm, using l ∼ 6 nm. Consequently, at a
length, L ≈ 50 nm, both wires are close to the metal-
insulator transition withW1 in the metallic (ξ > L) andW2
in the insulating regime (ξ < L).
The influence of dopant disorder on electronic structure is

explored in Figs. 3(b)–3(d). Examples of supercell configu-
rations with 0.25 ML, representing a 1.5 nm wide wire of
varying length (L ¼ 0.77, L ¼ 5.4, and L ¼ 10 nm),
are shown in Fig. 3(b) [1,13]. Infinite repetitions of such
cells in the transport direction are used to calculate the band
structure and density of states (DOS), Fig. 3(c). The shortest
cell (L ¼ 0.77 nm) represents an ordered wire [1,13]
and yields the quasi-1D metallic band structure and DOS
of Si∶P systems [13]. Including doping randomness requires
an increase of the supercell length to L ¼ 5.4 nm, leaving
the DOS essentially unchanged. Initial indications of carrier
localization is observed at L ¼ 10 nm, where we find a
prominent gap in theDOSbetween the lowest bands, labeled
Γ1 and Γ2. This is substantiated by plotting the charge
density for a repetition of this cell in Fig. 3(d), where we
observe clear fluctuations and the emergence of charge
“puddles.”
Importantly, however, despite initial indications for

carrier localization, a L ¼ 10 nm wire must still be
regarded metallic [13] as an appreciable density of states
exists at EF [black dashed lines in Fig. 3(c)]. The demon-
stration of carrier localization for bands at EF will require
modeling of supercells with lengths approaching the locali-
zation length (L≃ 36 nm). These calculations, however,
containing more than half a million atoms, are computa-
tionally too exhaustive and are currently not feasible.
Further insight into metallic conduction and its limits in

these wires is gained through measurements at millikelvin
temperatures. In Fig. 4(a), we compare the conductanceGW
of both wires recorded at Tel ≲ 200 mK. Both wires show
characteristic conductance fluctuations with key differ-
ences observed in the conductance distributions, PðGWÞ
[Figs. 4(b) and 4(c)]. These histograms have been obtained
by plotting statistically independent values of the conduct-
ance within the correlation voltage, VC ≃ 50 mV (obtained
via analysis of the autocorrelation function), and are in
agreement with a Thouless energy, ETh ≃ 1 meV, at a gate
lever of 0.02. According to scaling theory [19,37,38],
conductance in the metallic regime follows a normal
distribution [19,20,37–39],

PðGWÞ ∝ exp

�
−ðGW − hGWiÞ2

2δG2
W

�
; ð4Þ

centered around a mean conductance, hGWi > e2=h.
A standard deviation, δGW ∼ e2=h, corresponding to the
amplitude of universal conductance fluctuations (UCF)
[19,40,41] is a fundamental manifestation of quantum

interference effects in quasi-1D metals. Fitting the con-
ductance distribution of the 4.6 nm wide wire (W1) (solid
blue line), we find hGWi ¼ 3.3e2=h and δGW ¼ 1.3e2=h,
confirming metallic conduction at millikelvin temperatures.
The transition into the insulating regime is observed in
the 1.5 nm wide wire (W2) [Fig. 4(c)]. Here, PðGWÞ is
asymmetrically biased towards GW ¼ 0 with a slight tail
towards larger conductance. Both characteristics are indica-
tive of a log-normal distribution in the insulating regime
(hGWi < e2=h) [19,28,38,42],

P½lnðGWÞ� ∝ exp

�
−
½lnðGWÞ − hlnðGWÞi�2

2½δ lnðGWÞ�2
�
: ð5Þ

The characteristics of the conductance distribution com-
bined with the magnitude of the mean conductance and
estimates of the localization length, consequently provide a
consistent indicator of metallic conduction in atomic-scale
Si∶P wires.
In summary, we have explored metallic conduction and

its limits in atomic-scale Si∶P wires, patterned by STM
hydrogen lithography. Uniquely, here the valley multiplic-
ity of the silicon conduction band provides a sixfold
enhancement of the number of conducting modes at the
Fermi energy. This allows quasi-1D metallic conduction
over tens of nanometers with an electron mobility compa-
rable to that measured in the corresponding 2D system.
Towards the application of Si∶P wires in donor-based
quantum computing architectures [10,11], this implies that
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STM-patterned Si∶P δ-doped wires remain highly con-
ductive, despite their atomic-scale diameters, allowing us
to use them as low-resistive leads, electrostatic gates, and
electron reservoirs in scalable architectures.
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