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We study the extended Hubbard model on the triangular lattice as a function of filling and interaction
strength. The complex interplay of kinetic frustration and strong interactions on the triangular lattice leads
to exotic phases where long-range charge order, antiferromagnetic order, and metallic conductivity can
coexist. Variational Monte Carlo simulations show that three kinds of ordered metallic states are stable as a
function of nearest neighbor interaction and filling. The coexistence of conductivity and order is explained
by a separation into two functional classes of particles: part of them contributes to the stable order, while the
other part forms a partially filled band on the remaining substructure. The relation to charge ordering in
charge transfer salts is discussed.
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The study of frustrated and strongly interacting systems
in two dimensions has received an unbroken intensity of
research activities in recent years. Just to name a few
examples, spin-liquid and topological states have been
postulated in frustrated two-dimensional antiferromagnets
[1–5], supersolid phases have been established for hard-
core bosons on a triangular lattice [6–8], and the concept
of deconfined quantum critical points [9] has sparked a
tremendous interest in the search of exotic phase
transitions.
Above examples involve essentially spinlike systems,

where charge degrees of freedom only play a passive role.
When both spin and charge degrees of freedom are
considered at incommensurate filling the situation poten-
tially becomes even more interesting. In this context
organic conductors have become an interesting field of
research. In particular, in the charge transfer salts
θ-ðBEDT-TTFÞ2X [10–17] the molecules are arranged
on an anisotropic triangular lattice with incommensurate
filling, so this material class shows interesting frustration
effects. Conductors on frustrated lattices are also relevant
in the context of superconductivity as, for example, in the
layered triangular compound NaxCoO2 [18–20] where
interesting textures have been predicted recently [21,22].
For the description of the spin and charge degrees of

freedom in these compounds it is natural to use the
extended Hubbard model on the triangular lattice

H ¼ −t
X

hi;ji;σ
c†i;σcj;σ þ H:c:þU

X

i

ni;↑ni;↓ þ V
X

hi;ji
ninj;

ð1Þ

where we have used standard notation. In addition to
the relevance for the systems mentioned above, this

prototypical model is also of fundamental interest in order
to understand the interplay of frustration and strong
interactions with spin and charge degrees of freedom at
arbitrary filling n ¼ hn↑ þ n↓i. Unfortunately, analytical
and numerical studies of this system are far from trivial
and to our knowledge it has not yet been analyzed with
quantum many body simulations for incommensurate
filling. In this Letter we now use numerical variational
Monte Carlo simulations in order to establish the phase
diagram as a function of filling and interaction strength.
In addition to the ordinary metallic phase, three interesting
phases are found, where long-range charge order and
metallic conductivity are present simultaneously as
depicted in Fig. 1, which summarizes most of our findings.
The commensurate one-third filled case (n ¼ 2=3) has

been discussed in Ref. [16]. Quite intuitively, for strong
V ≳ U=3 ≫ t any nearest neighbor occupation is forbid-
den, resulting in an insulating ordered phase with exactly
two electrons on one sublattice (200 order), while for
weaker nearest neighbor repulsion double occupancy is
forbidden and instead two sublattices are half-filled in a
hexagonal order (110 order); see Fig. 1. A spin-liquid
phase is excluded, due to the breaking of the translational
invariance in the insulating region.
For incommensurate filling, the 110 phase in Fig. 1

represents a state where one of the three triangular sub-
lattices remains empty and all the electrons occupy the
other two sublattices in a hexagonal density pattern in order
to minimize the nearest neighbor repulsion. Since the
hexagonal order necessarily contains holes for n < 2=3,
this phase becomes conducting. Interestingly, this coexist-
ence of two counterintuitive properties (order and conduc-
tivity) is directly related to the supersolid state on triangular
lattices which has been established for hardcore bosons
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[6–8], and has analogously been postulated for spinless
fermions [23,24]. Simulations for hardcore bosons have
shown that a separation into two types of holelike particles
is possible [25]: One part creates the ordered state by
keeping one sublattice empty, while the other part can move
freely on the hexagonal structure (partial liquid). However,
as the filling approaches n ¼ 2=3 we observe a transition
to a phase where antiferromagnetic (AF) order coexists
with conductivity, which requires a different mechanism as
described below.
For the extended Hubbard model we find a third

interesting phase in the form of a 200 order in Fig. 1:
Double occupancy occurs only on one sublattice which is
reduced with filling and gives an ordered state. This state
has some surprising properties, since the observed con-
ductivity implies that the other two sublattices are not
completely empty either. The occupation on those two
sublattices therefore increases with decreasing filling,
which leads to conductive behavior. The phase transition
between the 110 and 200 states is first order close to
commensurate filling but may become second order for
n≲ 0.57. For large hoppings a transition to a simple metal
occurs.
In the quarter-filled n ¼ 1=2 case, the 200 ordered metal

is preempted by a region that has been named the “pinball
phase” in Refs. [23,24]. Also this phase is characterized by
increased occupation on one sublattice and the depletion of
the other two; however, in the pinball phase the number of

double occupancies is small and there is still a large fraction
of electrons residing on the two sublattices with reduced
occupation.
In order to simulate the model in Eq. (1) at zero

temperature we have used the variational Monte Carlo
method [26], which gives very good results [27] even
for correlated and frustrated systems by numerically
sampling expectation values over a variational ansatz.
A powerful correlated variational state is given by [28–31]
jΨFSi ¼ J jFSi, where jFSi is the noninteracting filled
Fermi sea, to which a finite small superconductive term is
added in order to regularize the wave function, i.e., to
separate the highest occupied and the lowest unoccupied
states by a gap. The term J ¼ expð−1=2PijvijninjÞ is a
density-density Jastrow factor, where the vij’s are opti-
mized with variational Monte Carlo calculations for every
independent distance ji − jj (including on site).
Backflow correlations further improve the correlated

state jΨFSi; in this approach, each orbital that defines
the unprojected state jFSi is taken to depend upon the
many-body configuration in order to incorporate virtual
hopping processes [32]. The excellent accuracy of the
variational estimate is shown in the Supplemental Material
[33]. The non-interacting state jFSi also includes three
different chemical potentials as variational parameters, one
for each sublattice. We must emphasize, however, that even
for a uniform variational chemical potential the charge
ordered metallic states spontaneously appears in the phase
diagram at arbitrary filling [33], which demonstrates the
stability of this phenomenon.
Finally, a coupling to an external field can be added in

order to check if the ground state is magnetically ordered.
All results presented here are obtained by fully incorpo-
rating the backflow corrections and optimizing individually
[36] every variational parameter in the wave function. We
then perform a Monte Carlo sampling of the observables.
The error bars are always smaller than the symbol size and
their order of magnitude is provided in the figure captions.
The static structure factor NðqÞ ¼ hn−qnqi is a

good indicator for metallic behavior, where nq ¼
1=

ffiffiffiffi
L

p P
r;σe

iqrnr;σ is the Fourier transform of the particle
density. The metallic phase is characterized by NðqÞ ∝ q
for q → 0, which implies a vanishing gap for particle-hole
excitations. On the contrary, NðqÞ ∝ q2 for q → 0, implies
a finite charge gap and insulating behavior [32].
These relations hold also with respect to the variationally
optimized ground state, as shown in the Supplemental
Material [33].
We find conducting behavior everywhere except for

n ¼ 2=3 and V=t≳ 3, as shown in Fig. 2. Interestingly,
a diverging behavior of Nðq → 0Þ is observed in the 200
phase, which we attribute to a q2 dispersion relation at
effective low filling as explained below.
In order to distinguish between the different kinds of

charge ordering in the model, we plot in Fig. 3 the
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FIG. 1 (color online). Upper panel: Phase diagram of the
Hubbard model for U ¼ 30t as a function of V=t and filling.
Three phases can be identified: a simple metal, a metallic state
with a 110 charge order, and a metallic state with a 200 charge
order. The charge order regions are insulating at commensurate
filling n ¼ 2=3 (thick lines) and metallic otherwise. In the
limiting case n ¼ 1=2 the 200 charge ordered phase is preempted
by the pinball one. For filling 0.62≲ n ≤ 2=3 we find an
indication for magnetic order (AF) within the 110 charge ordered
metal. Lower panel: sketch of the 110 charge order (left) and of
the 200 charge order (right).
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electronic density per sublattice nα with α ¼ A; B;C on
each of the three sublattices. Within the non-ordered
metallic phase, the electronic density is uniform, while
in the 110 region one sublattice depletes, with the electrons
forming an hexagonal density order; see Fig. 1. Finally, in
the 200 phase one sublattice is occupied with a substantial
density and an increasing double occupancy.
Both the cases n ¼ 2=3 and n ¼ 0.583 in Fig. 3 show a

clear distinction between the three regimes, while in the
limiting case n ¼ 1=2 we observe a single sublattice being
more and more occupied as long as the ratio V=t increases.
For V=t ≈ 10 a rapid crossover is observed for n ¼ 1=2,
separating the pinball phase from the 200 ordered metal
regime [33], with an associated rapid increase in double
occupancy.
Even though a high density of electrons on one sublattice

is the expected behavior for a small hopping t and 3V > U,
the 200 ordered metal has rather unusual properties. First
of all it is far from obvious why this ordered state is
conducting. In the 110 order the conductivity can be
explained by mobile holes moving on a hexagonal sub-
structure [23–25]. In the 200 order on the other hand, holes
only appear on one sublattice which is not connected, so
this argument fails. Moreover, we have checked that all the

electrons that are in a doubly occupied state also contribute
to the ordering, so conduction by virtual hopping or by pair
hopping can be ruled out. We present in Fig. 4 (left) the
charge order parameter ϕ as defined by

ϕ ¼ lim
ji−jj→∞

hðni;↑ni;↓Þðnj;↑nj;↓Þi; ð2Þ

where the distance ji − jj connects points on the same
sublattice, and compare it with the density of double
occupancies D ¼ hn↑n↓i. If the relation ϕ ¼ 3D2 holds,
all the double occupancies participate to the charge order,
otherwise, if ϕ < 3D2, a fraction of the double occupancies
is mobile outside the 200 pattern, with the limiting case
ϕ ¼ D2 corresponding to a uniform distribution of double
occupancies in the lattice. According to the result shown in
Fig. 4 (left) for V=t ¼ 10, the relation ϕ ¼ 3D2 is verified
in all the doping range and the system separates into charge
ordered double occupancies and free electrons that are
responsible for the conduction mechanism. Therefore,
conductivity appears to require a small density of electrons
on the two sublattices which are empty for n ¼ 2=3;
i.e., the density on the two almost empty sublattices must
increase with decreasing n. In Fig. 4 (right) we show δn,
that represents the electronic filling on the hexagonal
substructure, which is available for a conducting band in
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FIG. 2 (color online). NðqÞ=q as a function of jqj=π for
different values of V=t. Data are shown along the line between
Γ ¼ ð0; 0Þ and M ¼ ð0; 2π= ffiffiffi

3
p Þ in the Brillouin zone for three

different values of doping n ¼ 1=2, n ¼ 0.583, and n ¼ 2=3
from above at system size L ¼ 342. The absolute error bars on
NðqÞ are always smaller than 10−3 for all the shown q points.
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FIG. 3 (color online). Electronic density nα in each of the three
sublattices A, B, and C as a function of V=t. Data are presented
for the three values of the total electronic density n ¼ 1=2,
n ¼ 0.583, and n ¼ 2=3. The on-site Coulomb repulsion is
U ¼ 30t and the lattice size is L ¼ 324. The absolute error bars
on the densities range from 5 × 10−4 to 5 × 10−5.
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the 200 regime. In the case V=t ¼ 11 it is clear that δn
increases at increasing doping, while in the case V=t ¼ 10
there is a small decrease in δn when doping becomes large,
i.e., n≲ 0.57. This is just a consequence of the small and
almost constant number of double occupancies that occurs
at V=t ¼ 10 in the range 1=2 ≤ n≲ 0.57; see Fig. 4 (left).
Indeed, in this density range the transition between the 110
and the 200 phases becomes second order with a smooth
increase of the number of double occupancies as a function
of V=t. The effective filling of electrons on the hexagonal
substructure δn is rather low in the range 0.57≲ n ≤ 2=3.
Accordingly, the electrons follow a q2 dispersion relation at
the bottom of the band, which explains the divergence of
Nðq → 0Þ in this phase, as discussed above in Fig. 2.
Finally, we also tested for magnetic order and found

that an antiferromagnetic state has lower variational energy
for fillings 0.62≲ n ≤ 2=3 as indicated in Fig. 1. While
antiferromagnetic order is expected for commensurate
insulating fillings, it should immediately be destroyed by
moving holes on the hexagonal substructure. However, for
very small doping close to filling 2=3 the energy gain from
hopping of order tð2=3 − nÞ is not sufficient to overcome
the energy gain from long-range antiferromagnetism of
order nt2=U. Nonetheless, second order hopping processes
of holes via the depleted sites are still possible without
changing the spin orientation, so that a finite conductivity
is observed in coexistence with antiferromagnetic order in
this special case. This phase is stabilized for a large second
order hopping amplitude t2=V in agreement with our
finding in Fig. 1.
In conclusion, we have analyzed the extended Hubbard

model on the triangular lattice as a function of interaction
strength and filling. The phase diagram in Fig. 1 shows
three ordered metallic phases at incommensurate filling.
A simple metallic phase is confirmed for large hopping.
With increasing interaction strength an ordered metal with
a 110-type order is observed, due to the appearance of
holes on a stable hexagonal order, which is analogous
to the underlying mechanism for supersolidity [25]. For
filling close to 2=3 we observe a phase transition to an

antiferromagnetically ordered metal. A 200-ordered phase
with one double occupied sublattice is found for still larger
nearest neighbor repulsion, which surprisingly also shows
conductive behavior. The observed occupancy of the
sublattices B and C and the electronic properties are
consistent with a band on the hexagonal substructure with
very low filling. This is surprising, since the strong nearest
neighbor repulsion naively presents a large energy barrier
for electrons on the hexagonal substructure next to the
double occupied sites. The detailed mechanisms of the
conductive behavior both in the 200 phase and in the 110
antiferromagnetic phase remain a topic of future research.
Experimentally, charge ordering phenomena in charge

transfer salts have been researched with a large variety of
methods, e.g., NMR, x-ray, and infrared or Raman spec-
troscopy [37]. Coexistence of metallic behavior and charge
ordering has only been observed in few cases for
θ-ðBEDT-TTFÞ2X and β00-ðBEDT-TTFÞðTCNQÞ charge
transfer salts and only for short range charge order [38].
The scenario we have proposed in this Letter predicts a
coexistence of metallic behavior and long-range order,
which is not due to a partial instability of the Fermi surface.
Instead, we can identify a separation into two functional
classes of particles (or holes): part of them contribute
to a stable order on one sublattice, while another part forms
a partially filled band on the remaining hexagonal
substructure.
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