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We use low energy optical spectroscopy and first principles local density approximation plus dynamical
mean field theory calculations to test the hypothesis that the anomalous transport properties of strongly
correlated metals originate in the strong temperature dependence of their underlying resilient quasipar-
ticles. We express the resistivity in terms of an effective plasma frequency ω�

p and an effective scattering
rate 1=τ�tr. We show that in the archetypal correlated material V2O3, ω�

p increases with increasing
temperature, while the plasma frequency from the partial sum rule exhibits the opposite trend. 1=τ�tr has a
more pronounced temperature dependence than the scattering rate obtained from the extended Drude
analysis. The theoretical calculations of these quantities are in quantitative agreement with experiment. We
conjecture that these are robust properties of all strongly correlated metals, and test the conjecture by
carrying out a similar analysis on thin film NdNiO3 on a LaAlO3 substrate.
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Understanding the transport properties in metallic states
of strongly correlated materials is a long-standing challenge
in condensed matter physics. Many correlated metals are
not canonical Landau Fermi liquids (LFLs) as their
resistivities do not follow the T2 law in a broad temperature
range. Fermi liquid behavior emerges only below a very
low temperature scale TLFL, which can be vanishingly small
or hidden by the onset of some form of long range order.
Above TLFL, the resistivity usually rises smoothly and
eventually exceeds the Mott-Ioffe-Regel limit, entering the
so-called “bad metal” regime [1] with no clear sign of
saturation [2,3]. As stressed in Ref. [1] an interpretation of
the transport properties in terms of quasiparticles (QPs) is
problematic when the mean free path is comparable with
the de Broglie wavelength of the carriers, and describing
the charge transport above TLFL is an important challenge
for the theory of strongly correlated materials.
It was shown in the context of the interacting electron-

phonon system, that the QP picture is actually valid in
regimes that fall outside the LFL hypothesis [4]. There are
peaks in the spectral functions that define renormalized
QPs even though the QP scattering rate is comparable to the
QP energy. The transport properties can be formulated in
terms of a transport Boltzman kinetic equation for the QP
distribution function, which has precisely the form pro-
posed by Landau [5,6]. Solving the transport equation, the
dc conductivity can be expressed as

σdc ¼ ðω�
pÞ2τ�tr=4π ð1Þ

in analogy with the Drude formula. The effective transport
scattering rate 1=τ�tr characterizes the decay of QPs due to
collisions involving Umklapp process, and ω�

p is the low
energy effective plasma frequency.

The temperature dependence of the transport coefficients
beyond the scope of LFL and many salient features seen in
correlated oxides, such as their low coherence scale,
nonsaturating resistivities, and anomalous transfer of spec-
tral weight, are described well in studies of the doped
Hubbard model within the framework of dynamical field
mean theory (DMFT) (for early reviews of this topic see
Refs. [7,8]). A complete understanding of the transport
anomalies has been reached recently [9–11]. As in the
Prange-Kadanoff theory [4], the QPs are resilient, surviving
in a broad region above TLFL [10], and a quantum kinetic
equation provides a quantitative description of the trans-
port [11].
While in the electron-phonon coupled system treated in

Ref. [4] the Fermi liquid parameters such as the QP
velocities and therefore ω�

p are temperature independent,
they are strongly temperature dependent in the doped Mott
insulator within DMFT due to changes in the Fermi surface
at high temperatures [9,10] and a strong temperature
dependence of the effective mass at intermediate temper-
atures [10,11]. This strong temperature dependence of ω�

p
hides the more conventional temperature dependence of
1=τ�tr in the resistivity, which is quadratic in a broad region
of temperatures and has saturating behavior at high temper-
atures [11]. The strong temperature dependence in the QP
electronic structure with the resulting temperature depend-
ence of ω�

p and 1=τ�tr thus provides a simple scenario to
describe the anomalous transport of correlated metals.
In this Letter, we provide experimental and theoretical

evidence that this picture holds beyond the DMFT treat-
ment of the simplified Hubbard model, and is indeed
relevant to real materials. We focus on V2O3. This
archetypal correlated material provided the first experi-
mental corroboration of the validity of the DMFT picture of
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the Mott transition [12] and is still a subject of intense
experimental studies [13–17]. We extract the effective
plasma frequency ω�

p and effective scattering rate 1=τ�tr
from the optical conductivity as described below and show
that they display the predicted temperature dependence. We
contrast their temperature dependence to that of the plasma
frequency and scattering rate extracted from the standard
extended Drude analysis.
In correlated systems the optical conductivity is usually

parametrized with the so-called extended Drude analysis in
terms of two frequency dependent quantities, the scattering
rate 1=τðωÞ and the mass enhancement m�ðωÞ=mb [18],

σðωÞ ¼ σ1ðωÞ þ iσ2ðωÞ ¼
ω2
p

4π

1

−iω m�ðωÞ
mb

þ 1=τðωÞ
: ð2Þ

The plasma frequency ωp is obtained with the partial sum
rule ðω2

p=8Þ ¼
RΩ
0 σ1ðωÞdω and depends on the cutoff Ω

chosen so as to exclude interband transitions. To test the
theory, instead we focus on quantities that have a simple QP
interpretation, namely 1=τ�tr and ðω�

pÞ2, from the low
frequency optical conductivity extracted as follows:

ðω�
pÞ2 ¼ 4π

σ21 þ σ22
σ2=ω

�
�
�
�
ω→0

; 1=τ�tr ¼
σ1

σ2=ω

�
�
�
�
ω→0

: ð3Þ

When a direct determination of the imaginary part of the
optical conductivity (as for example in ellipsometry mea-
surements) is not available, they can be extracted from
σ1ðωÞ only, using

σ2ðωÞ
ω

�
�
�
�
ω→0

¼ −
1

π

Z
∞

−∞

1

ω0
∂σ1ðω0Þ
∂ω0 dω0: ð4Þ

Comparing with the extended Drude analysis, we have
ðω�

pÞ2 ¼ ðmb=m�ð0ÞÞω2
p, ð1=τ�trÞ ¼ ðmb=m�ð0ÞÞð1=τð0ÞÞ.

Thus, this analysis is related to the extended Drude
analysis, but is free of the partial sum rule. Similar
low frequency analysis has been used in previous works
[18–24]; however, the temperature dependence of ω�

p and
ð1=τ�trÞ was not the focus of those studies.
We apply the proposed analysis to V2O3, a prototypical

material exhibiting a metal insulator transition (MIT)
[25,26]. Pure V2O3 is a paramagnetic metal (PM) at
ambient conditions. It enters the antiferromagnetic insulat-
ing state (AFI) below TN ≃ 150 K with a concomitant
structural transition, and the AFI can be quenched by Ti
doping or pressure. The PM can be turned into a para-
magnetic insulator by slight Cr doping, which induces a
first order isostructural transition with a small change in the
c=a ratio, indicating a typical band-controlled MIT sce-
nario [27]. This first order transition ends at a second order
critical point at a temperature around 400 K [13,26]. The
PM phase exhibits significant signatures of correlations; for
instance, a pronounced QP peak and a broad lower Hubbard
band were revealed in photoemission spectroscopy

measurements [28–30]. The PM phase is a Fermi liquid
at low temperature when the AFI is suppressed [31].
Figures 1(a) and 1(b) show the measured optical con-

ductivity σðωÞ ¼ σ1ðωÞ þ iσ2ðωÞ of pure V2O3 in the PM
phase [16]. Pronounced Drude peaks show up even when
the resistivity is high (of the order of 1 mΩ−1 cm−1) and
does not follow the T2 law [13,32]. The Drude peak
diminishes gradually upon increasing temperature, except
at the lowest temperature where the transport is probably
affected by the precursor of the ordered phase. ω�

p and 1=τ�tr
extracted according to Eq. (3) are shown in Figs. 1(c)
and 1(d). We find that ðω�

pÞ2 increases with increasing
temperature. This is in contrast with ðωpÞ2 obtained by the
partial sum rule with a cutoffΩ ¼ 140 meV, which slightly
decreases [16] except at the lowest temperature where
precursors to the ordered phase such as magnetism and
electronic heterogeneity tend to open a gap and reduce
ðωpÞ2. 1=τ�tr increases with increasing temperature and has
the same trend as the scattering rate extracted with the
extended Drude analysis at zero frequency 1=τð0Þ, but with
a much stronger temperature dependence. The experimen-
tal data are consistent with an ðω�

pÞ2 that has a term linear
and a 1=τ�tr that is quadratic in temperature, revealing a
Fermi liquid behavior that is hidden in 1=τ�tr. The analysis
of the experimental data thus corroborates the main
qualitative predictions of the DMFT description of trans-
port properties in the simple model Hamiltonian [11].
We now argue that realistic local density approximation

plus dynamical mean field theory (LDAþDMFT) [33,34]
calculations describe well the optical properties as well
as the extracted quantities ω�

p and 1=τ�tr; hence, a local

FIG. 1 (color online). Optical conductivity (a) σ1ðωÞ and
(b) σ2ðωÞ ofV2O3 at different temperatures is taken fromRef. [16],
where dashed lines indicate data at T ¼ 180 K very close to the
MIT. (c) ðω�

pÞ2 and (d) 1=τ�tr of V2O3 are extracted according to
Eq. (3).ω2

p and 1=τð0Þ extracted from the extended Drude analysis
are shown for comparison. Dashed lines are guides for the eye by
fitting ðω�

pÞ2 and 1=τ�tr [1=τð0Þ] to linear (aþ bT) and parabolic
(cþ dT2) functions, respectively.
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approximation, which ignores vertex corrections, is suffi-
ciently accurate to capture the experimental trends. LDAþ
DMFT investigations on V2O3 by several groups have
successfully described the properties of this material near
the MIT [35–40]. The correlation in V2O3 is due to the
partially filled narrow d orbitals with a nominal occupancy
nd ¼ 2. The two electrons mainly populate the eπg and a1g
states of vanadium due to the surrounding oxygen octahe-
dron with trigonal distortion. We perform the LDAþ
DMFT calculations and focus on the paramagnetic metallic
phase only [41]. We treat eπg and a1g orbitals dynamically
with DMFT, and set the Coulomb interaction U and the
Hund’s coupling J to 6.0 and 0.8 eV, respectively. These
parameters place V2O3 on the metallic side but close to the
MIT. Various properties of V2O3 from our calculations are
in good agreement with experimental results. For example,
the calculated total spectra is consistent with experiment
photoemission spectroscopy measurements [28–30]. The
occupancies of the eπg and a1g orbitals at T ¼ 200 K are
1.60 and 0.50, respectively, in good agreement with x-ray
absorption spectroscopy measurements [51].
We calculate the optical conductivity with the formalism

presented in Ref. [52] in a broad temperature range as
shown in Fig. 2(a). The main features of the experimental
optical conductivity, the Drude peak and the shoulder
structure at about 0.1 eV as well as their scale, are
reasonably reproduced in our calculations. The Drude peak
is gradually diminished and merges with the shoulder
structure at around 400 K, in agreement with experiments
[53]. Therefore, the LDAþDMFT calculation provides a
satisfactory description of the optical properties of V2O3,
except for the lowest temperature T ¼ 180 K where effects

such as short range order and heterogeneity in the prox-
imity to the magnetic transition are not captured in our
calculation. From the optical conductivity ðω�

pÞ2 and 1=τ�tr
are extracted using Eqs. (3) and (4). As shown in Figs. 2(b)
and 2(c), they agree reasonably well with those extracted
from experimental data. In particular, the same trends found
with the experimental data, and thus the main characteristics
of the “hidden” Fermi liquid behavior, show up more clearly
in the broad temperature range studied in our calculations:
ðω�

pÞ2 appears linear and a 1=τ�tr appears quadratic versus
temperature. Therefore, the proposed analysis of both the
experimental data and the first principles calculations reveals
a significant temperature dependence of the QPs in terms of
ðω�

pÞ2 and an extended quadratic temperature dependence of
1=τ�tr, but not of 1=τð0Þ.
To further understand these observations, let us recall the

QP interpretation of the low frequency optical conductivity
in the DMFT treatment of the doped single band Hubbard
model. In this case, σðωÞjω→0 ¼ 2ðm=m�ÞΦxxðμ̄Þ×
1=ð−iωþ 2=τ�qpÞ, in which m�=m and τ�qp are the effective
mass enhancement and the lifetime of the QPs, Φ is the
transport function ΦxxðϵÞ ¼ P

kð∂ϵk=∂kxÞ2δðϵ − ϵkÞ, and
μ̄ is the effective chemical potential of the QPs [11].
Applying the analysis in Eq. (3), ðω�

pÞ2 ¼ 8πðm=m�Þ×
Φxxðμ̄Þ and 1=τ�tr ¼ 2=τ�qp. In the infinite dimension limit
where DMFT is exact, the inverse of the effective mass
enhancement m=m� is numerically equal to the QP weight
defined by Z ¼ ð1 − ð∂ReΣðωÞ=∂ωÞÞ−1, where ΣðωÞ is the
self-energy. We note that in general the effective mass
enhancement m�=m enters the low frequency optical
conductivity while the QP weight Z does not [5,6]. We
also note that the effective mass enhancement m�=m does
not enter the plasma frequency in the textbook example of
an interacting Fermi gas due to the presence of Galilean
invariance and thus the cancellation of the vertex correction
and effective mass enhancement [5,6]. However, the vertex
correction is weak in realistic materials (especially in a
three-dimensional structure with a large coordination num-
ber), which are much closer to the infinite-dimensional
limit than the Galilean invariant idealization without
important Umklapp process [54]. This justifies the good
agreement between our results and experiments. The
neglect of the vertex correction in DMFT thus leaves the
QP weight in the plasma frequency. In situations where
Φðμ̄Þ varies little with temperature, the observations above
imply a strong temperature dependence of Zqp and 1=τ�qp.
We emphasize that although a strong dependence of the
scattering rate is generally expected in a Fermi liquid, the
temperature dependence of the QP weight is not, but it was
observed in model studies [10,11].
We then extract from our calculated self-energies, the QP

weight Z defined above, and the QP scattering rate defined
as 2=τ�qp ¼ −2ZImΣð0Þ, which now are orbital dependent.
The QP weight and the QP scattering rate are shown in
Figs. 3(a) and 3(b). There is orbital differentiation

FIG. 2 (color online). (a) Optical conductivity of V2O3 calcu-
lated with the LDAþDMFT method. The effective plasma fre-
quency (b) and effective scattering rate (c) are extracted using
Eqs. (3) and (4) and compared to those extracted from experimental
data. Dashed lines are guides to the eye by fitting ðω�

pÞ2 and 1=τ�tr to
linear (aþ bT) and parabolic (cþ dT2) functions, respectively.
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between the eπg and a1g orbitals as pointed out in earlier
studies [35,37]. Generally Z increases with increasing
temperature and 1=τ�qp is approximately quadratic in
temperature for both eπg and a1g orbitals. The a1g orbital
is more coherent than the eπg orbital: Za1g is less temperature
dependent and the effective QP scattering rate is smaller. It
likely crosses over to the LFL regime below T ≃ 150 K
where Za1g starts to saturate. Note that the e

π
g orbitals have a

much larger spectral weight at the Fermi level than the a1g
orbital and thus dominate the transport. This pronounced
temperature dependence is consistent with that of ðω�

pÞ2
and 1=τ�tr extracted from the optical conductivity.
Therefore, the properties of the underlying QPs, especially
the temperature dependence of the QP weight and the QP
scattering rate, are captured in our analysis on optical
conductivities. We note that, in addition, the temperature
dependence of the underlying QPs manifests itself in the
temperature dependence of the effective chemical poten-
tials of the QPs [41], which also contribute to the temper-
ature dependence of ðω�

pÞ2.
We expect that this picture of anomalous transport in

correlated materials is not limited to V2O3 and is in fact
generally applicable to various strongly correlated metals. To
check the validity of this general conjecture we apply the
same analysis to experimental data of a NdNiO3 (NNO) film
on a LaAlO3 (LAO) substrate. NNO is another typical
correlated material exhibiting a temperature-driven MIT
[55]. While deposited as a film on a LAO substrate, the
MIT can be quenched so that it remains metallic down to
very low temperature [56]. High quality optical conductiv-
ities of a NNO film are taken from Ref [57] as shown in
Figs. 4(a) and 4(b). We note that the resistivity is not T2-like
except possibly at the lowest temperature T ¼ 20 K [56].
We perform the same analysis as above in V2O3. ðω�

pÞ2 and
1=τ�tr are shown in Figs. 4(c) and 4(d) in comparison with ω2

p
and 1=τð0Þ obtained by the extended Drude analysis with a
cutoff ofΩ ¼ 125 meV. Again we have the same features as
in V2O3: ðω�

pÞ2 increases almost linearly with increasing
temperature and has the opposite trend with ðωpÞ2, while
1=τ�tr has a more pronounced quadratic behavior in a wide
temperature range well above TLFL.

In conclusion, in this Letter we point out and establish by
analyzing both the experimental and the theoretical data
that the anomalous transport properties observed in many
transition-metal oxides arise from a temperature dependent
ðω�

pÞ2 and 1=τ�tr. The quadratic dependence of the QP
scattering rate hidden from the resistivity is not confined to
Mott-Hubbard systems but occurs also in a Hund’s metal
such as CaRuO3 [41]. Further investigations should be
carried out in other compounds, starting from systems
where there are already preliminary indications, such as
nickelates, pnictides, and cuprates [58–60], with a temper-
ature dependent m�ð0Þ=mb seen in the extended Drude
analysis. Finally, high resolution studies using spectros-
copies such as ARPES and STM in quasiparticle interfer-
ence mode would be very useful to separate the various
contributions to the temperature dependence of ðω�

pÞ2 by
probing directly the electronic structure.
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